
Will it replace TCP?

Lars Eggert
Technical Director, Networking

2020-2-3

© 2020 NetApp, Inc. All rights reserved. 1

Role: figure out where
networking tech is going

§ Internal R&D

§ Collaborative (EU projects,
university grants)

§ Open source (Linux, BSD)

§ Academic (ACM SIGCOMM)

§ Standards (IETF/IRTF)

Lars Eggert
https://eggert.org/

© 2020 NetApp, Inc. All rights reserved. 2

2018- NetApp, FI
Technical Director

2011-18 NetApp, DE
Technical Director

2007-11 Nokia, FI
Principal Scientist

2003-07 NEC Europe, DE
Senior Researcher

2003 PhD, USC, US

1991-95 TH Darmstadt, DE

Talk outline

1) Internet Transport

2) Current Challenges

3) QUIC

4) Initial Measurements

5) Status & discussion

QUIC – Will it replace TCP?

© 2020 NetApp, Inc. All rights reserved. 3

QUIC: a fast, secure, evolvable transport protocol for the Internet

© 2020 NetApp, Inc. All rights reserved. 4

§ Fast better user experience than TCP/TLS for HTTP/2 and other content

§ Secure always-encrypted end-to-end security, resist pervasive monitoring

§ Evolvable prevent network from ossifying, deploy new QUIC versions quickly

§ Transport support all TCP content & more (realtime media, etc.)
provide better abstractions, avoid known TCP issues

UDP CC TLS HTTP

tl;dr

§The web will move to QUIC first, and then everything else will
§ This year!

§ If you do anything with HTTP, TCP or just networks,
QUIC should be on your radar now

§Also for academics
§ We’re still in the “QUIC & XYZ” paper phase

© 2020 NetApp, Inc. All rights reserved. 5

Internet transport

© 2020 NetApp, Inc. All rights reserved. 6

The Internet hourglass

§ Inspired by OSI “seven-layer” model
§ Minus presentation (6) and session (5)

§ “IP on everything”
§ All link tech looks the same (approx.)

§ Transport layer provides
communication abstractions to apps
§ Unicast/multicast
§ Multiplexing
§ Streams/messages
§ Reliability (full/partial)
§ Flow/congestion control
§ …

Classical version

© 2020 NetApp, Inc. All rights reserved. 7

Steve Deering. Watching the Waist of the Protocol Hourglass.
Keynote, IEEE ICNP 1998, Austin, TX, USA. http://www.ieee-
icnp.org/1998/Keynote.ppt

email WWW phone...

SMTP HTTP RTP...

TCP UDP…

IP

ethernet PPP…

CSMA async sonet...

copper fiber radio...

Layer 3

Layer 4

Layer 7

Layer 2

Layer 1

Boardwatch Magazine, Aug. 1994.

§ The waist has split: IPv4 and IPv6

§ TCP is drowning out UDP

§ HTTP and TLS are de facto part of
transport

§ Consequence: web apps on IPv4/6

The Internet hourglass
2015 version (ca.)

© 2020 NetApp, Inc. All rights reserved. 8

 ip4
ip6

Link

TCP

Applications

TLS
HTTP

In the meantime...
• The interface at the endpoint is

largely the same as it has been:

• "The network is a file descriptor"

• The waist of the hourglass has crept
up to HTTP: even less flexible.

• Transport is squeezed in the middle.

• Way out: applications implement
their own new transport features.

3

Layer 3

Layer 4

Layer 7

Layer 1/2

B. Trammell and J. Hildebrand, "Evolving Transport in the Internet," in IEEE
Internet Computing, vol. 18, no. 5, pp. 60-64, Sept.-Oct. 2014.

§ Transport slow to evolve (esp. TCP)
§ Fundamentally difficult problem

§ Network made assumptions about what
(TCP) traffic looked like & how it behaved

§ Tried to “help” and “manage”
§ TCP “accelerators” & firewalls, DPI, NAT, etc.

§ The web happened
§ Almost all content on HTTP(S)
§ Easier/cheaper to develop for & deploy on
§ Amplified by mobile & cloud
§ Baked-in client/server assumption

What happened?

Internet
ossification

Slow
transport
evolution

Middlebox
boom

Rise of
the web

© 2020 NetApp, Inc. All rights reserved. 9

Example ossifications

© 2020 NetApp, Inc. All rights reserved. 10

IP •Send from/to anywhere anytime vs. enforced directionality & timeliness

IP •Many protocols on top of IP vs. packets dropped unless TCP or UDP

IP •End-to-end addressing vs. network assumes it can rewrite addresses/ports

IP •Use IP options to signal vs. options not used (dropped) on WAN

* •Bits have meaning only inside a layer vs. network can (should!) touch bits across a packet

TCP •Network is stateless vs. network assumes it can track entire connection

TCP •Data has meaning to app only vs. network can rewrite or insert

TCP challenges

© 2020 NetApp, Inc. All rights reserved. 11

TCP is not aging well

§ We’re hitting hard limits (e.g., TCP option space)
§ 40B total (15 * 4B - 20)
§ Used: SACK-OK (2), timestamp (10), window Scale (3), MSS (4)
§ Multipath needs 12, Fast-Open 6-18…

§ Incredibly difficult to evolve, c.f. Multipath TCP
§ New TCP must look like old TCP, otherwise it gets dropped
§ TCP is already very complicated

§ Slow upgrade cycles for new TCP stacks (kernel update required)
§ Better with more frequent update cycles on consumer OS
§ Still high-risk and invasive (reboot)

§ TCP headers not encrypted or even authenticated – middleboxes can still meddle
§ TCP-MD5 and TCP-AO in practice only used for (some) BGP sessions

© 2020 NetApp, Inc. All rights reserved. 12

By Ere at Norwegian Wikipedia (Own work) [Public domain], via Wikimedia
Commons

Middleboxes meddle

Algorithm 1. TCP acceleration algorithm

1: p ¼ receive packetðÞ
2: f ¼ classifyðpÞ
3: if ðis TCPðpÞÞ then
4: if ðis SYNðpÞÞ then
5: if ð!record existsðf ÞÞ then
6: establish buffer spaceðf Þ
7: end if
8: sendðSYN=ACK;upstreamÞ
9: sendðp;downstreamÞ

10: start timerðpÞ
11: else if ððis DATAðpÞÞ&&ðrecord existsðf ÞÞÞ then
12: if ð!buffer fullðf ÞÞ then
13: storeðp; f Þ
14: sendðACK;upstreamÞ
15: if ðoutstanding ACKsðf Þ þ size of ðpÞ <

max windowðf Þ then
16: sendðp;downstreamÞ
17: start timerðpÞ
18: end if
19: end if
20: else if ððis ACKðpÞÞ&&ðrecord existsð!f ÞÞÞ then
21: stop timerð!pÞ
22: releaseð !ðpÞ;!f Þ
23: while ðoutstanding ACKsð!f Þþ

size of ðnext stored packetð!f ÞÞ <
max windowð!f Þ do

24: sendðnext stored packetð!f Þ;!f Þ
25: start timerðnext stored packetð!f ÞÞ
26: end while
27: else if ððis FINðpÞÞ&&ðrecord existsðf ÞÞÞ then
28: sendðFIN=ACK; upstreamÞ
29: sendðp;downstreamÞ
30: start timerðpÞ
31: mark buffer for removalðf Þ
32: else
33: handle exceptionðp; f Þ
34: end if
35: else
36: sendðp; downstreamÞ
37: end if
38:
39: when ðtimeoutðpÞÞ
40: retransmitðpÞ

The flow control window size that is advertised by an accelera-
tor node is the amount of free buffer space up to half of the total
buffer space allocated to the connection (maximum 64 kB). In

addition to the state maintenance as described above, a RTT esti-
mator needs to be maintained for each flow according to the TCP
specification. The timers for each transmitted packet can be imple-
mented efficiently as described in [22]. Since each connection re-
quires buffer space, it might not be possible to accelerate all
connections traversing an accelerator node. In such a case, only a
subset of connections is accelerated (not considered in Algorithm
1). This can be performed as part of the packet classification step
in Line 2.

3.2.3. NP software components
Fig. 3 shows the architecture of a TCP acceleration node on a

network processor. The NP implements two processing paths for
packets. Packets that cannot be accelerated due to resource con-
straints or non-TCP protocols are forwarded without any modifica-
tion. In order to identify such packets, it is necessary to have a
packet classification mechanism (e.g., simple 5-tuple hash func-
tion). Packets that are accelerated require Layer 3 and Layer 4 pro-
cessing, which involves IP input processing, TCP acceleration, and
IP output processing. The TCP accelerator has access to a large
memory to store TCP state (connection state as well as data buf-
fers). It is important to note that packets which are processed in
the TCP accelerator are not addressed to the router system that
performs the acceleration. Instead, the router transparently inter-
cepts these packets and performs the acceleration. The end sys-
tems are also unaware of this processing that is performed by
the router.

3.2.4. Processing and memory resources
TCP processing requires additional computational and memory

resources as compared to plain IP forwarding. The processing con-
sists of IP input and output processing as well as TCP processing.
The total processing requirements in terms of the number of pro-
cessing cycles are presented in Section 5. The memory require-
ments are determined by the size of the TCP connection state
(tens of bytes) and the TCP buffer size (tens of kilobytes). The buf-
fer requirements for a TCP accelerator are determined by the max-
imum window size that is allowed on a connection. The accelerator
needs to reliably buffer all packets that have not been acknowl-
edged by the receiver plus all packets that can possible be sent
by the sender. Thus, the ideal buffer size is two times the maxi-
mum window size of the connection.

Sender Conventional
router

SYN

SYN / ACK 1

Receiver

SYN

SYN / ACK 1

Data 1
Data 1

ACK 2

ACK 2

Data 2
Data 3 Data 2

Data 3
ACK 3

ACK 3

Data 4
Data 4Data 3
Data 3
ACK 3

ACK 5ACK 3

ACK 5

timeout

Sender TCP
accelerator

SYN

SYN / ACK 1

Receiver

SYNSYN / ACK 1

Data 1

Data 1

ACK 2

ACK 2

Data 2
Data 3

Data 2

Data 3

ACK 3

ACK 3

Data 4
Data 3

ACK 4

ACK 5

ACK 5

ACK 3

Accelerator
buffer

1

1 2
timeout

Data 3
3

2

ACK 4

Data 4
3 4

4

timeout

Fig. 2. Message sequence chart of an example connection comparing conventional and accelerated TCP connections.

694 S. Ladiwala et al. / Computer Communications 32 (2009) 691–702Example: TCP accelerators

© 2020 NetApp, Inc. All rights reserved. 13

network. In this section, we first describe the overall idea of trans-
parent TCP acceleration from the perspective of an end-to-end con-
nection traversing the network. Then, we view TCP acceleration
from a router’s point of view.

3.1. Network topology

Fig. 1(a) illustrates a conventional TCP connection where only
the end-systems participate in Layer 4 processing. The network
performs Layer 3 forwarding on datagrams and does not alter
any of the Layer 4 segments. Fig. 1(b) illustrates how TCP acceler-
ation nodes (denoted by ‘A’) change this paradigm. An accelerator
node terminates TCP connections and opens a second connection
to the next Layer 4 node. This allows the accelerator node to shield
the TCP interactions (e.g., packet loss) from one connection to an-
other. As a result, the feedback control loops, which implement the
fundamental mechanisms of reliability, flow control, and conges-
tion control, are smaller with lower delay. As a result, accelerated
TCP can react faster and achieve higher throughput than conven-
tional TCP.

3.2. Node architecture

Before we quantify the performance improvement from TCP
Acceleration in Section 4, we discuss how an accelerator node
implements this functionality.

3.2.1. Acceleration example
To illustrate the behavior of an individual TCP accelerator node,

Fig. 2 shows a space–time diagram for an example connection over
conventional routers and TCP accelerators. For simplicity, unidirec-
tional traffic with 1-byte packets is assumed. The initial sequence
number is assumed to be 1. As Fig. 2(a) illustrates in this example,
conventional routers just forward segments without interacting on
the transport layer. In contrast, the TCP accelerator node in
Fig. 2(b) actively participates in the TCP connection (e.g., responds
to SYN, DATA, ACK, and FIN segments). By receiving packets and

acknowledging them to the sender before they have arrived at
the receiver, the TCP accelerator effectively splits one TCP connec-
tion into two connections with shorter feedback loops. In order to
be able to retransmit packets that may get lost after an acknowl-
edgment has been sent to the sender, the accelerator node requires
a buffer (shown on the side of Fig. 2). The following example shows
the typical behavior of the TCP accelerator:

! Immediate response to sender: SYN and DATA packets are
immediately buffered and acknowledged. The only exception
is the first arrival of DATA 3, where no buffer space is
available.

! Local retransmission: When packets are lost, they are locally
retransmitted (e.g., DATA 3). Due to a shorter RTT for both con-
nections, a shorter timeout can more quickly detect the packet
loss.

! Flow control back pressure: When the connection from the
accelerator node is slower than the one to it, buffer space will
fill up and no additional packets can be acknowledged and
stored. This will cause the sender to detect packet loss and
slow down.

The most important observation in Fig. 2 is that the end-systems
do not see any difference to a conventional TCP connection (other
than packet order and performance).

3.2.2. Acceleration algorithm
The detailed interactions of a TCP accelerator node with a flow

of packets from a connection are shown in Algorithm 1. The steps
of the algorithm are:

! Lines 1–2: A packet is received and classified. The variable p rep-
resents the packet and f represents the flow to which the packet
belongs.

! Lines 3 and 35–36: If a packet is not a TCP packet, it is forwarded
without further consideration.

! Lines 4–10: If a packet is a SYN packet (indicating connection
setup) and no flow record exists, then a flow record is estab-
lished. A SYN/ACK is returned to the sender and the SYN is for-
warded towards the destination (‘‘upstream” and ‘‘downstream”
respectively). Since the SYN can get lost, a timer needs to be
started for that packet. If the SYN/ACK gets lost, the original sen-
der will retransmit the SYN and cause a retransmission of the
SYN/ACK.

! Lines 11–19: If data are received from the upstream sender and
buffer space is available, then the packet is buffered and for-
warded downstream. If no buffer space is available, the TCP
accelerator needs to propagate back-pressure to slow down
the sender. In this case, the packet is not acknowledged and per-
ceived as a packet drop by the sender. The congestion control
mechanism of the sender will slow down the sending rate until
buffer space becomes available. Packets are only forwarded
when the downstream connection does not have too much out-
standing data (lines 15–18).

! Lines 20–26: If an ACK is received, then buffer space in the com-
plementary flow (flow in the opposite direction, denoted by !f)
can be released. This reduces the amount of outstanding data
and (potentially several) packets can be transmitted from the
buffer space of !f .

! Lines 27–31: If a FIN is received, connection teardown can be
initiated.

! Lines 32–33: If a packet does not match the above criteria, it is
handled as an exception.

! Lines 39–40: Whenever a timeout occurs, the packet that has ini-
tiated the timer is retransmitted.

TCP connection

A
A

TCP connection TCP connection TCP connection

Fig. 1. Conventional and accelerated TCP connections. Systems that implement TCP
functionality are marked with ‘A’.

S. Ladiwala et al. / Computer Communications 32 (2009) 691–702 693

Sameer Ladiwala, Ramaswamy Ramaswamy, and Tilman Wolf. Transparent TCP acceleration. Computer Communications, Volume 32, Issue 4, 2009, pages 691-702.

Middleboxes meddle
Example: Nation states attacking end users or services

© 2020 NetApp, Inc. All rights reserved. 14

B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield, S. McKune, A. Rey, J. Scott-Railton, R. Deibert, and V. Paxson.
An Analysis of China’s “Great Cannon”. 5th USENIX FOCI Workshop, 2015.

QFIRE Pilot Lead. NSA/Technology Directorate. QFIRE pilot report. 2011.

§ IETF (& wider) community consensus that pervasive
monitoring is an attack

§ Agreement to mitigate pervasive monitoring

§ What does “mitigate” mean?

§ To many, ”encrypt as much as possible”

Pervasive monitoring is an attack
RFC 7528

© 2020 NetApp, Inc. All rights reserved. 15

Laura Poitras / Praxis Films. CC BY 3.0

Introduction
QUIC

© 2020 NetApp, Inc. All rights reserved. 16

How do you make the web faster?

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

google.com

U
se

r-p
er

ce
iv

ed
 la

te
nc

y
QUIC - Redefining Internet Transport. J. Iyengar. IETF-93 QUIC BoF presentation, 2015.

© 2020 NetApp, Inc. All rights reserved. 17

How do you make the web faster?

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

google.com

Google CDN

U
se

r-p
er

ce
iv

ed
 la

te
nc

y

Build a
carrier-grade

network google.com

QUIC - Redefining Internet Transport. J. Iyengar. IETF-93 QUIC BoF presentation, 2015.

© 2020 NetApp, Inc. All rights reserved. 18

How do you make the web faster?
QUIC - Redefining Internet Transport. J. Iyengar. IETF-93 QUIC BoF presentation, 2015.

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

Chrome

HTTP/2

google.com

Google CDN

U
se

r-p
er

ce
iv

ed
 la

te
nc

y

Launch your
own browser

Update HTTP

Build a
carrier-grade

network google.com
© 2020 NetApp, Inc. All rights reserved. 19

How do you make the web faster?
QUIC - Redefining Internet Transport. J. Iyengar. IETF-93 QUIC BoF presentation, 2015.

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

Chrome

HTTP/2

???

google.com

Google CDN

U
se

r-p
er

ce
iv

ed
 la

te
nc

y

Launch your
own browser

Update HTTP

Build a
carrier-grade

network

Update
the
transport

google.com
© 2020 NetApp, Inc. All rights reserved. 20

QUIC: a fast, secure, evolvable transport protocol for the Internet

© 2020 NetApp, Inc. All rights reserved. 21

§ Fast better user experience than TCP/TLS for HTTP/2 and other content

§ Secure always-encrypted end-to-end security, resist pervasive monitoring

§ Evolvable prevent network from ossifying, deploy new QUIC versions quickly

§ Transport support all TCP content & more (realtime media, etc.)
provide better abstractions, avoid known TCP issues

UDP CC TLS HTTP

QUIC is not that new, actually

§ Originates with Google, deployed between Google services and Chrome since 2014

§ As of mid-2017, makes up 35% of Google egress traffic (~7% of total Internet traffic)

© 2020 NetApp, Inc. All rights reserved. 22

A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev,
W. Chang, and Z. Shi. 2017. The QUIC Transport Protocol: Design and Internet-Scale Deployment.. ACM SIGCOMM, 2017.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA A. Langley et al.

Figure 2: Timeline showing the percentage of Google traffic served over
QUIC. Significant increases and decreases are described in Section 5.1.

Figure 3: Increase in secure web traffic to Google’s front-end servers.

our current deployment, but IETF standardization will modularize
it into constituent parts. In addition to separating out and specify-
ing the core protocol [33, 34], IETF work will describe an explicit
mapping of HTTP on QUIC [9] and separate and replace QUIC’s
cryptographic handshake with the more recent TLS 1.3 [55, 63].
This paper describes pre-IETF QUIC design and deployment. While
details of the protocol will change through IETF deliberation, we
expect its core design and performance to remain unchanged.

In this paper, we often interleave our discussions of the protocol,
its use in the HTTPS stack, and its implementation. These three are
deeply intertwined in our experience. The paper attempts to reflect
this connectedness without losing clarity.

2 MOTIVATION: WHY QUIC?
Growth in latency-sensitive web services and use of the web as a plat-
form for applications is placing unprecedented demands on reducing
web latency. Web latency remains an impediment to improving user-
experience [21, 25], and tail latency remains a hurdle to scaling the
web platform [15]. At the same time, the Internet is rapidly shifting
from insecure to secure traffic, which adds delays. As an example
of a general trend, Figure 3 shows how secure web traffic to Google
has increased dramatically over a short period of time as services
have embraced HTTPS. Efforts to reduce latency in the underlying
transport mechanisms commonly run into the following fundamental
limitations of the TLS/TCP ecosystem.
Protocol Entrenchment: While new transport protocols have been
specified to meet evolving application demands beyond TCP’s sim-
ple service [40, 62], they have not seen wide deployment [49, 52, 58].
Middleboxes have accidentally become key control points in the In-
ternet’s architecture: firewalls tend to block anything unfamiliar for
security reasons and Network Address Translators (NATs) rewrite
the transport header, making both incapable of allowing traffic from
new transports without adding explicit support for them. Any packet
content not protected by end-to-end security, such as the TCP packet

header, has become fair game for middleboxes to inspect and mod-
ify. As a result, even modifying TCP remains challenging due to
its ossification by middleboxes [29, 49, 54]. Deploying changes to
TCP has reached a point of diminishing returns, where simple pro-
tocol changes are now expected to take upwards of a decade to see
significant deployment (see Section 8).
Implementation Entrenchment: As the Internet continues to evolve
and as attacks on various parts of the infrastructure (including the
transport) remain a threat, there is a need to be able to deploy changes
to clients rapidly. TCP is commonly implemented in the Operat-
ing System (OS) kernel. As a result, even if TCP modifications
were deployable, pushing changes to TCP stacks typically requires
OS upgrades. This coupling of the transport implementation to the
OS limits deployment velocity of TCP changes; OS upgrades have
system-wide impact and the upgrade pipelines and mechanisms are
appropriately cautious [28]. Even with increasing mobile OS popula-
tions that have more rapid upgrade cycles, sizeable user populations
often end up several years behind. OS upgrades at servers tend to
be faster by an order of magnitude but can still take many months
because of appropriately rigorous stability and performance testing
of the entire OS. This limits the deployment and iteration velocity
of even simple networking changes.
Handshake Delay: The generality of TCP and TLS continues to
serve Internet evolution well, but the costs of layering have become
increasingly visible with increasing latency demands on the HTTPS
stack. TCP connections commonly incur at least one round-trip delay
of connection setup time before any application data can be sent,
and TLS adds two round trips to this delay2. While network band-
width has increased over time, the speed of light remains constant.
Most connections on the Internet, and certainly most transactions on
the web, are short transfers and are most impacted by unnecessary
handshake round trips.
Head-of-line Blocking Delay: To reduce latency and overhead costs
of using multiple TCP connections, HTTP/1.1 recommends limiting
the number of connections initiated by a client to any server [19].
To reduce transaction latency further, HTTP/2 multiplexes multi-
ple objects and recommends using a single TCP connection to any
server [8]. TCP’s bytestream abstraction, however, prevents applica-
tions from controlling the framing of their communications [12] and
imposes a "latency tax" on application frames whose delivery must
wait for retransmissions of previously lost TCP segments.

In general, the deployment of transport modifications for the
web requires changes to web servers and clients, to the transport
stack in server and/or client OSes, and often to intervening mid-
dleboxes. Deploying changes to all three components requires in-
centivizing and coordinating between application developers, OS
vendors, middlebox vendors, and the network operators that deploy
these middleboxes. QUIC encrypts transport headers and builds
transport functions atop UDP, avoiding dependence on vendors and
network operators and moving control of transport deployment to
the applications that directly benefit from them.

2TCP Fast Open [11, 53] and TLS 1.3 [55] seek to address this delay, and we discuss
them later in Section 8.

184

QUIC in the stack

§ Integrated transport stack on top of UDP

§ Replaces TCP and some part of HTTP; reuses TLS-1.3

§ Initial target application: HTTP/2

§ Prediction: many others will follow

© 2020 NetApp, Inc. All rights reserved. 23

J. Iyengar. QUIC Tutorial A New Internet Transport/ IETF-98 Tutorial, 2017.

TLS

HTTP/2

TCP

IP

QUIC

TCP-like CC +
loss recovery

UDP

HTTP over QUIC

TLS 1.3

Why UDP?

§ TCP hard to evolve

§ Other protocols blocked by middleboxes (SCTP, etc.)

§ UDP is all we have left

§ Not without problems!
§ Many middleboxes ossified on “UDP is for DNS”
§ Enforce short binding timeouts, etc.
§ Short-term issue with hardware NIC offloading

§ Also, benefits
§ Can deploy in userspace (no kernel update needed)
§ Can offer alternative transport types (partial reliability, etc.)

© 2020 NetApp, Inc. All rights reserved. 24

UDP

Image
from http://itpro.nikkeibp.co.jp

Why congestion control?

§ Functional CC is absolute requirement for operation over real networks
§ UDP has no CC

§ First approach: take what works for TCP, apply to QUIC
§ Consequence: need
§ Segment/packet numbers
§ Acknowledgments (ACKs)
§ Round-trip time (RTT) estimators
§ etc.

§ Not an area of large innovation at present
§ This will change
§ <your PhD goes here>

© 2020 NetApp, Inc. All rights reserved. 25

CC

Image from People’s Daily, http://people.cn/

Why transport-layer security (TLS)?

§ End-to-end security is critical
§ To protect users
§ To prevent network ossification

§ TLS is very widely used
§ Can leverage all community R&D
§ Can leverage the PKI

§ Don’t want custom security –
too much to get wrong
§ Even TLS keeps having issues
§ But TLS 1.3 removes a lot of cruft

§ And benefit from new TLS features
§ E.g., 0-RTT handshakes (inspired by gQUIC-crypto)

© 2020 NetApp, Inc. All rights reserved. 26

TLS

Images from Cloudflare.

TLS1.2 TLS1.3
1RTT

TLS1.3
0RTT

Why HTTP?

§ Because that’s where the impact is
§ Web industry incredibly interested in improved UE and security

§ Rapid update cycles for browsers, servers, CDNs, etc.
§ Can deploy and update QUIC quickly

§ Many other app protocols will follow

© 2020 NetApp, Inc. All rights reserved. 27

HTTP

Selected aspects
QUIC

© 2020 NetApp, Inc. All rights reserved. 28

Minimal network-visible header

© 2020 NetApp, Inc. All rights reserved. 29

§ With QUIC, the network sees:
§ Packet type (partially obfuscated)
§ QUIC version (only in long packet header)
§ Destination CID
§ Packet number (obfuscated)

§ With TCP, also
§ ACK numbers, ECN information
§ Timestamps
§ Windows & scale factors

§ Also, entire QUIC header is authenticated,
i.e., not modifiable

§ 32-bit version field
§ IP: 8 bits, TCP: 0 bits

§ Allows rapid deployment of new versions
§ Plus, vendor-proprietary versions

§ Very few protocol invariants
§ Location and lengths of version and CIDs in LH
§ Location and lengths of CID in SH (if present)
§ Version negotiation server response
§ Etc. (details under discussion)

§ Everything else is version-dependent
§ But must grease unused codepoints!

Version negotiation
(Currently under re-design)

© 2020 NetApp, Inc. All rights reserved. 30

Date

IPs

Q0 Q024 Q025 Q026 Q027 Q028 Q029
Q030 Q031 Q032 Q033 Q034 Q035 Q036
Q037 Q038 Q039 Q040 Q041 wwww

1. Oct 2016 1. Jan 2017 1. Apr 2017 1. Jul 2017 1. Oct 2017
0

200k

400k

600k

800k

Source: RWTH QUIC Measurements: https://quic.comsys.rwth-aachen.de/

1-RTT vs. 0-RTT handshakes

§ QUIC client can send 0-RTT data in first packets
§ Using new TLS 1.3 feature

§ Except for very first contact between client and server
§ Requires 1-RTT handshake (same latency as TCP w/o TLS)

§ Huge latency win in many cases (faster than TCP)
§ HTTPS: 7 messages
§ QUIC 1-RTT or TCP: 5 messages
§ QUIC 0-RTT: 2 messages

§ Also helps with
§ Tolerating NAT re-bindings
§ Connection migration to different physical interface

§ But only for idempotent data

© 2020 NetApp, Inc. All rights reserved. 31

§ Inside the crypto payload,
QUIC carries a sequence of frames
§ Encrypted = can change between versions

§ Frames can come in any order

§ Frames carry control data and payload data

§ Payload data is carried in STREAM frames
§ Most other frames carry control data

§ Packet acknowledgment blocks in ACK frames

Everything else is frames

§ PADDING
§ PING
§ ACK
§ RESET_STREAM
§ STOP_SENDING
§ CRYPTO
§ NEW_TOKEN
§ STREAM
§ MAX_DATA
§ MAX_STREAM_DATA
§ MAX_STREAMS
§ DATA_BLOCKED
§ STREAM_DATA_BLOCKED
§ STREAMS_BLOCKED
§ NEW_CONNECTION_ID
§ RETIRE_CONNECTION_ID
§ PATH_CHALLENGE
§ PATH_RESPONSE
§ CONNECTION_CLOSE
§ HANDSHAKE_DONE

© 2020 NetApp, Inc. All rights reserved. 32

Stream multiplexing

§ A QUIC connection multiplexes potentially many streams
§ Congestion control happens at the connection level
§ Connections are also flow controlled

§ Streams
§ Carry units of application data
§ Can be uni- or bidirectional
§ Can be opened by client or server
§ Are flow controlled
§ Currently, always reliably transmitted (partial reliability coming soon)

§ Number of open streams is negotiated over time (as are stream windows)

§ Stream prioritization is up to application

© 2020 NetApp, Inc. All rights reserved. 33

Current status & discussions

© 2020 NetApp, Inc. All rights reserved. 34

§ QUIC is being standardized in the IETF
§ QUIC is already very different from Google QUIC

§ Est. delivery date: Sep 2020

§ 20+ known implementation efforts:

QUIC and the IETF

§ https://quicwg.github.io/

§ https://quicdev.slack.com
© 2020 NetApp, Inc. All rights reserved. 35

Interop status

© 2020 NetApp, Inc. All rights reserved. 36

https://docs.google.com/spreadsheets/d/1D0tW89vOoaScs3IY9RGC0UesWGAwE6xyLk0l4JtvTVg/edit#gid=117825384

VHUYHU�ĺ

K�
R�T
XLF
O\

TX
DQ
W

QJ
WFS
�

PY
IVW

SLF
R4
8,
&

PV
TX
LF

I� $7
6

TX
LFK
H

OVT
XLF

QJ
[B
TX
LF

$S
SOH
48
,&

TX
LF�
JR

4X
LQQ

DLR
TX
LF

aJ
48
,&

TX
LFN
HU

1H
TR

3D
QG
RU
D

.Z
LN	
)OX
SN
H

6S
LQG
XP
S

FOLHQW�Ļ

K�R�TXLFO\ 8*&%4<53
7.�

*&% *&%57 � �
� �

�

TXDQW
8*&%4<53

�

8*&%4<53
/$72'.

8*&%4<53
/$7
�

8*&%4<3
$
�

8*&%4<53
/$72
�

8*&%4<53
72
�

8*&%4<53
7'
�

8*&%4<53
/$
�

8*&%4<5

�

8*&%4<5
/72'
�

8*&%4<3

�

� 8*&%453
/$72'

8*&%4<53
/$72
�

8*&%43

�

�

�

8

�

�

QJWFS�
8*&%4� 8 8*&%4<5

/$7
�FR

8*&%4<5
/$7
�

8*&%
76
�F

8*&%4<5
7
�

8*&%4<5
/$
�

8*&%4<5

�

8*&%4<5
/$76
�FR

� 8*&%4<5
/$7
�FR

8*&%4

�

�

� �

�

PYIVW
8*&%4<3
$.6
�FR

� �

� �

�

SLFR48,&
8*&%4<53

6
�

8*&%4<53
/$726

8*&%4<53
/$7
�

8*&%64<3
/.6
�

8*&%4<53
/$#72.6

�

8*&%4<53
7
�

8*&%4<5
76
�

8*&%4<53
$
�

8*&%4<53

�

8*&%4<53
/$#726

�

8*&% � 8*&%43
$
�

�

� �

�

PVTXLF
8*&%43 8*&%4<53

/$7.6
8*%453
/7

8*&%4<3
/$.6
�F

8*&%4<53
/$7.6
�

8*&%4<53
/$#72.6

�F

8*%45
7
�

8*&%4<53
7
�

8*%&4<3 8*%453
/$7

8 8 � 8*&%53
$7

8*&%4<53
/$7.
�F

8*&%43
$
�

�

�

8

�

�

I�
8*&%5
6
�F

8*&%5 8*&5

�F

Z 8*&%5

�

8*&%
6
�F

8*&%5
6
�F

8*&%5

�F

85 8*&% � 8*&%4<53
/$#72.6

�

8*&%

�F

�

� �

�

$76
8*&%453

�

8*&%453
/

8*&%453
/
�

8*&%453

�

8*&%453

�

8*&%45

�

8*&%453
/
�

8*&%45

�

8*&%453
/
�

� 8*&%45
/
�

8*&43

�

�

� �

�

TXLFKH � � � � �

OVTXLF
8*&%453

�

8*&%453
/
�FR

8*&%43
6
�FR

8*&%453
26
�

8*&%453
26
�F

8*&%45
6
�F

8*&%453

�

8*&%45

�

8*&%453
/2'6

�FR�=�?

� 8*&%453
26
�FR

8*&%43

�F

�

� �

�

QJ[BTXLF � � � � �

$SSOH48,&
*&%5

�

*&5

�F

*& � 8 �

� �

�

TXLF�JR � � � � �

4XLQQ
8*&%4<5

$7
8*&%4<
$7
�

8*&%4<5
$
�

8*&%4<5
$7
�

8*&%4<5
$7
�

8*&%4<5 8*&%4<5
$
�

8*&%4<5
$7
�

� 8*&%4<53
$7
�

8*&%45
$
�

�

� �

�

DLRTXLF
8*&%4<53

�

8*&%4<53
$7

8*&%4<53
/$7
�FR

8*&%4<3
$.6
�FR

8*&%4<53
/$72.6

�

8*&%4<5
/$72.
�F

8*&%4<5
7
�F

8*&%4<53
/$
�

8*&%4<5

�

8*&%4<53
/$726
�FR

� 8*&%4<53
/$72.6
�FR

8*&%43

�F

�

�

8

�

�

aJ48,&
8*&4<

�

8 8*&4<

�F

� 8*&%4<

�

85 8*&%4<5

�F

8*&5 8*&45
$
�

8*&%45

�

� � 8*&4<5
$
�F

8*&%4
$
�F

�

� �

�

TXLFNHU � � � � �

1HTR
8 8 8* 8*&%4 8*&%4 8*&%45

�

8*&% � *&%

�

8* �

� �

�

3DQGRUD � � � � �

.ZLN)OXSNH
8*&%45

�

8*&%45
/$

8*&%45 8*&%45
$
�

8*&%45
/$
�

8*&%

�

8*&%45

�

8*&%45

�

8*&%45

�

8*&%45
/$
�

8*&4

�

*&%45

�

8*&%45
$
�

�

� �

�

6SLQGXPS � � � � �

7R�7HVW�

9HUVLRQ�1HJRWLDWLRQ 9 $�YHUVLRQ�QHJRWLDWLRQ�UHVSRQVH�LV�HOLFLWHG�DQG�DFWHG�RQ

+DQGVKDNH + 7KH�KDQGVKDNH�FRPSOHWHV�VXFHVVIXOO\ 1HZ�FHOO�IRUPDW�

6WUHDP�'DWD ' 6WUHDP�GDWD�LV�EHLQJ�H[FKDQJHG�DQG�$&.
HG)LUVW�URZ��$Q\�RI�9+'&5=64���WDEOH�VWDNHV��

&RQQHFWLRQ�&ORVH & 7KH�FRQQHFWLRQ�FORVH�SURFHGXUH�FRPSOHWHV�ZLWK�D�]HUR�HUURU�FRGH 6HFRQG�URZ��$Q\WKLQJ�HOVH�SURWRFRO�UHODWHG�� �XSSHUFDVH�OHWWHUV�

5HVXPSWLRQ 5 &RQQHFWLRQ�LV�HVWDEOLVKHG�XVLQJ�7/6�5HVXPH�7LFNHW 7KLUG�URZ��+��WHVWV�� �������DQ\�ORZHUFDVH�OHWWHUV�

��577 = ��577�GDWD�LV�EHLQJ�VHQW�DQG�DFWHG�RQ ,QVHUW�OLQHEUHDN�ZLWK�&PG�5HWXUQ��RQ�0DF�DW�OHDVW�

6WDWHOHVV�5HWU\ 6 $�KDQGVKDNH�WKDW�LQFOXGHV�D�5HWU\�SDFNHW�FRPSOHWHV�VXFFHVVIXOO\

4XDQWXP�5HDG\ 4 $�KDQGVKDNH�XVLQJ�&OLHQW+HOOR�VSDQQLQJ�DFURVV�PXOWLSOH�SDFNHWV�FRPSOHWHG�VXFFHVVIXOO\��VHH�4XDQWXP�5HDGLQHVV�WHVW�RQ�:LNL�

0LJUDWLRQ 0 $�QHZ�&,'�LV�RIIHUHG�WR�WKH�SHHU��DQG�LW�PLJUDWHV�WKH�FRQQHFWLRQ�WR�LW

5HELQGLQJ % 7KH�FOLHQW�PRYHV�WR�D�GLIIHUHQW�SRUW��DQG�WKH�VHUYHU�PLJUDWHV�WR�LW

$GGUHVV�0RELOLW\ $ 7KH�FOLHQW�PRYHV�WR�D�GLIIHUHQW�,3�DGGUHVV��DQG�RU�DGGUHVV�IDPLO\���DQG�WKH�VHUYHU�PLJUDWHV�WR�WKH�QHZ�SDWK

.H\�8SGDWH 8 2QH�HQGSRLQW�FDQ�XSGDWH�NH\V�DQG�LWV�SHHU�UHVSRQGV�FRUUHFWO\

6SLQ 3 $�FRQQHFWLRQ�ZLWK�WKH�VSLQ�ELW�VXFFHHGV�DQG�WKH�ELW�LV�VSLQQLQJ

(&1 (6HW�(&7����RQ�RXWJRLQJ�SDFNHWV�DQG�YHULI\�WKDW�$&.�IUDPHV�ZLWK�(&1�LQIRUPDWLRQ�DUH�UHFHLYHG���1RWH��WHVW�FDQ�IDLO�LI�SDWK�EOHDFKHV�(&1��

/RJJLQJ / 7KHUH�LV�VRPH�IRUP�RI�VWUXFWXUHG�ORJJLQJ�DYDLODEOH�IURP�ERWK�WKH�LPSOHPHQWDWLRQV��H�J���TORJ��TXLF�WUDFH�

7KURXJKSXW 7 'RZQORDG�REMHFWV�QDPHG����������DQG�����������RQ�VHSDUDWH�FRQVHFXWLYH�FRQQHFWLRQV�RYHU�ERWK�+��DQG�+�������LI�+��QRW�DYDLODEOH���+��VKRXOG�DW�PRVW�EH�����VORZHU�WKDQ�+��
+� � $Q�+��WUDQVDFWLRQ�VXFFHHGHG

43$&.�'\QDPLF�7DEOHV G 2QH�RU�ERWK�HQGSRLQWV�LQVHUW�HQWULHV�LQWR�G\QDPLF�WDEOH�DQG�VXEVHTXHQO\�UHIHUHQFH�WKHP�IURP�KHDGHU�EORFNV

386+ S &OLHQW�UHFHLYHG�VHUYHU�SXVK

.QRZQ�EURNHQ ;

6HOI�WHVW

1�$ �

$�

�PHDQV�WKHUH�ZDV�FRPSOLDQFH�ZLWK�WKH�OHWWHUV��EXW�WKH�LPSOHPHQWDWLRQ�ZDV�EL]DUUHO\�QRQFRQIRUPDQW

'LVFXVV�RQ�KWWSV���TXLFGHY�VODFN�FRP�

&RORULQJ�DXWR�DSSOLHG�EDVHG�RQ�WKH�OHWWHU�FRGHV��VHH��FRQGLWLRQDO�IRUPDWWLQJ��XQGHU�WKH��)RUPDW��PHQX�

�,QWHURS�0DWUL[�IRU�WKH�1RY�������LQWHURS�PHHWLQJ�DW�,(7)����

�

Beyond QUIC v1

Applications
(esp. realtime) Multipath

Performance
(CC, Satellite, etc.) Extensions

QUIC v2

© 2020 NetApp, Inc. All rights reserved. 37

Encryption vs. X

Measurement-informed Internet evolution

§ Independent passive measurability of the
Internet one key factor to success

§ Many protocols deficiencies were
identified and fixed based on independent
measurements
§ Large area of academic work

§ Are we giving up something fundamental
here?

§ Or are we at a point where active
measurements have taken over anyway?

© 2020 NetApp, Inc. All rights reserved. 38

Network management

§ Claims that network management systems
rely on TCP header inspection
§ To obtain loss, RTT, etc. information

§ Concern that encrypting this information
will be troublesome for network operators

§ Proposals for limited information exposure
§ e.g., the “spin bit”, the “loss bits”

§ Uncertainties
§ Can networks trust this information?
§ Incentives for opting in? Penalties??

of Google QUIC
Initial measurements

© 2020 NetApp, Inc. All rights reserved. 39

Google measurements

The QUIC Transport Protocol SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Figure 9: Comparison of QUICg and TCPg for various metrics, versus
minimum RTT of the connection. The y-axis is normalized against the
maximum value in each dataset. Presented data is for desktop, but the
same trends hold for mobile as well. The x-axis shows minimum RTTs
up to 750 ms, which was chosen as reasonable due to Figure 8: 750 ms
encompasses over 95% of RTTs and there is no information gained by
showing more data.

Figure 10: Average TCP retransmission rate versus minimum RTT ob-
served by the connection. These results were gathered from video play-
backs. We note that this graph shows the retransmission rate averaged
within 10 ms RTT buckets, and the actual rate experienced by a connec-
tion can be much higher [22]. Across all RTTs, retransmission rates are
0%, 2%, 8% and 18% at the 50th, 80th, 90th and 95th percentiles.

in part by the fact that QUIC connections established by the mo-
bile app only achieve a 68% 0-RTT handshake rate on average—a
20% reduction in successful 0-RTT handshake rate as compared
to desktop—which we believe is due to two factors. Recall from
Section 3.1 that a successful 0-RTT handshake requires both a valid
server config and a valid source address token in a client’s handshake
message, both of which are cached at the client from a previous suc-
cessful handshake. The source-address token is a server-encrypted
blob containing the client’s validated IP address, and the server

config contains the server’s credentials. First, when mobile users
switch networks, their IP address changes, which invalidates the
source-address token cached at the client. Second, different server
configurations and keys are served and used across different data
centers. When mobile users switch networks, they may hit a different
data center where the servers have a different server config than that
cached at the client. Analysis of server logs shows that each of these
two factors contributes to about half of the reduction in successful
0-RTT handshakes.

Finally, we attribute the latency increase in QUICg at the 1st
and 5th percentiles to additional small costs in QUIC, including
OS process scheduler costs due to being in user-space, which are a
higher proportion of the total latency at low overall latencies. We
discuss QUIC’s limitations further in Section 6.8.

6.4 Video Latency
Video Latency for a video playback is measured as the time between
when a user hits "play" on a video to when the video starts playing.
To ensure smooth playbacks, video players typically buffer a couple
seconds of video before playing the first frame. The amount of data
the player loads depends on the bitrate of the playback. Table 1 shows
that users in QUICg experience decreased overall Video Latency for
both desktop and mobile YouTube playbacks.

Figure 9 shows that Video Latency gains increase with client RTT,
similar to Search Latency. An average of 85% of QUIC connections
for video playback on desktop receive the benefit of a 0-RTT hand-
shake, and the rest benefit from a 1-RTT handshake. As with Search
Latency, QUIC loss recovery improvements may help Video Latency
as client RTT increases.

QUIC benefits mobile playbacks less than desktop. The YouTube
app achieves a 0-RTT handshake for only 65% of QUIC connections.
Additionally, the app tries to hide handshake costs, by establishing
connections to the video server in the background while users are
browsing and searching for videos. This optimization reduces the
benefit of QUIC’s 0-RTT handshake, further reducing gains for
mobile video in QUICg.

6.5 Video Rebuffer Rate
To ensure smooth playback over variable network connections, video
players typically maintain a small playback buffer of video data. The
amount of data in the buffer varies over time. If the player reaches
the end of the buffer during playback, the video pauses until the
player can rebuffer data. Video Rebuffer Rate, or simply Rebuffer
Rate is the percentage of time that a video pauses during a playback
to rebuffer data normalized by video watch time, where video watch
time includes time spent rebuffering. In other words, Rebuffer Rate is
computed as (Rebuffer Time) / (Rebuffer Time + Video Play Time).

Table 2 indicates that users in QUICg experience reduced Rebuffer
Rate on average and substantial reductions at higher percentiles.
These results are qualitatively different from Search Latency and
Video Latency since the contributing factors are different: Rebuffer
Rate is largely insensitive to handshake latency. It is instead influ-
enced by loss-recovery latency, since missing data on an audio or
video stream can stall video playback. It is also influenced by the
connection’s overall throughput, which determines the rate at which
video is delivered to the client.

191

ACM SIGCOMM 2017

© 2020 NetApp, Inc. All rights reserved. 40

Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan
Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik,
Patrik Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor
Vasiliev, Wan-Teh Chang, and Zhongyi Shi. 2017. The QUIC
Transport Protocol: Design and Internet-Scale Deployment.
In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM '17). ACM, New York, NY, USA,
183-196. DOI: https://doi.org/10.1145/3098822.3098842

The QUIC Transport Protocol SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

an unrestricted front-end server for termination of the TLS session
and further processing. There is no QUIC equivalent to a TCP-
terminating proxy, since the transport session cannot be terminated
separately from the rest of the cryptographic session. UDP-proxying
therefore simply forwards incoming client UDP packets to the un-
restricted front-end servers. This allows users getting served at the
RELs to use QUIC, since without UDP-proxying the RELs would
only be able to speak TCP.

QUIC’s performance improvement in July 2016 is attributed to the
deployment of UDP-proxying at our RELs (labeled ’3’ in Figure 6).
As a result of UDP-proxying, QUIC’s average overall improvement
in Search Latency increased from about 4% to over 7%, showing
that for this metric, QUIC’s latency reductions more than made up
for improvements from TCP termination at the RELs.

6 QUIC PERFORMANCE
In this section, we define three key application metrics that drove
QUIC’s development and deployment, and we describe QUIC’s
impact on these metrics. We also describe QUIC’s CPU utilization at
our servers and outline known limitations of QUIC’s performance.

Though we use "mobile" as shorthand throughout this paper, we
note that it refers to both a difference in operating environment
as well as a difference in implementation. The Google Search and
YouTube apps were developed independently from Chrome, and
while they share the same network stack implementation, they are
tuned specifically for the mobile environment. For example, the
Google Search app retrieves smaller responses, whose content has
been tailored to reduce latency in mobile networks. Similarly, the
YouTube app pre-warms connections to reduce video playback la-
tency and uses an Adaptive Bit Rate (ABR) algorithm that is opti-
mized for mobile screens.

Tables 1 and 2 summarize the difference between QUIC users and
TLS/TCP users on three metrics: Search Latency, Video Playback
Latency, and Video Rebuffer Rate. For each metric, the tables show
QUIC’s performance impact as a percent reduction between using
TLS/TCP and using QUIC. If QUIC decreased Search Latency from
100 seconds to 99 seconds, it would be indicated as a 1% reduction.
We describe QUIC’s performance on these metrics further below but
briefly discuss our experiment setup first.

6.1 Experiment Setup
Our performance data comes from QUIC experiments deployed
on various clients, using the clients’ frameworks for randomized
experimental trials. Users are either in the QUIC experimental group
(QUICg) or in the TLS/TCP control group (TCPg). Unless explicitly
specified, we show QUIC performance as the performance of users
in QUICg, which includes users who were unable to speak QUIC due
to failed handshakes. This group also includes data from TLS/TCP
usage prior to QUIC discovery as described in Section 3.8. Most
users in this group however are able to speak QUIC (see Section 7.2),
and most of their traffic is in fact QUIC. Clients capable of using
QUIC use TLS/TCP for only 2% of their HTTP transactions to
servers which support QUIC. The size of the QUICg and TCPg
populations are equal throughout.

Clients that do not use QUIC use HTTP/28 over a single TLS/TCP
connection for Search and HTTP/1.1 over two TLS/TCP connections
for video playbacks. Both QUIC and TCP implementations use a
paced form of the Cubic algorithm [26] for congestion avoidance. We
show data for desktop and mobile users, with desktop users accessing
services through Chrome, and mobile users through dedicated apps
with QUIC support. Since TCP Fast Open is enabled at all Google
servers, results include such connections. However TCP Fast Open
has seen limited deployment at clients (seen Section 8).

Unless otherwise noted, all results were gathered using QUIC
version 35 and include over a billion samples. All search results
were gathered between December 12, 2016 and December 19, 2016,
and all video playback results were gathered between January 19,
2017 and January 26, 2017.

6.2 Transport and Application Metrics
Before diving into application performance, we first discuss transport-
level handshake latency as a microbenchmark that QUIC seeks to
improve. We then discuss our choice of application metrics used in
the rest of this section.

Handshake latency is the amount of time taken to establish a
secure transport connection. In TLS/TCP, this includes the time
for both the TCP and TLS handshakes to complete. We measured
handshake latency at the server as the time from receiving the first
TCP SYN or QUIC client hello packet to the point at which the
handshake is considered complete. In the case of a QUIC 0-RTT
handshake, latency is measured as 0 ms. Figure 7 shows the impact
of QUIC’s 0-RTT and 1-RTT handshakes on handshake latency.

Figure 7: Comparison of handshake latency for QUICg and TCPg ver-
sus the minimum RTT of the connection. Solid lines indicate the mean
handshake latency for all connections, including 0-RTT connections.
The dashed line shows the handshake latency for only those QUICg
connections that did not achieve a 0-RTT handshake. Data shown is
for Desktop connections, mobile connections look similar.

With increasing RTT, average handshake latency for TCP/TLS
trends upwards linearly, while QUIC stays almost flat. QUIC’s hand-
shake latency is largely insensitive to RTT due to the fixed (zero)
latency cost of 0-RTT handshakes, which constitute about 88% of all
QUIC handshakes. The slight increase in QUIC handshake latency
with RTT is due to the remaining connections that do not success-
fully connect in 0-RTT. Note that even these remaining connections
complete their handshake in less time than the 2- or 3-RTT TLS/TCP
handshakes.

We do not show microbenchmarks to characterize transport-level
impact of QUIC’s improved loss recovery, but this improvement

8Google’s SPDY protocol [3] has been subsumed by the HTTP/2 standard [8].

189

HTTP vs. QUIC (Northeastern/Purdue)

“QUIC performs better
than TCP, except under
reordering, but
improvements diminish
with transfer size”

Arash Molavi Kakhki, Samuel Jero,
David Choffnes, Cristina Nita-
Rotaru, and Alan Mislove. 2017.
Taking a long look at QUIC: an
approach for rigorous evaluation
of rapidly evolving transport
protocols. In Proceedings of the
2017 Internet Measurement
Conference (IMC '17). ACM, New
York, NY, USA, 290-303. DOI:
https://doi.org/10.1145/3131365.31
31368

ACM IMC 2017

© 2020 NetApp, Inc. All rights reserved. 41

RTT = 36ms, loss = 1%

RTT = 112ms, loss = 0%

RTT = 112ms with re-ordering, loss = 0%RTT = 112ms with re-ordering, loss = 0%

RTT = 36ms, loss = 0%
44%

45%

44%

QUIC is faster

TCP is faster

Object Size
Ba

nd
w

id
th

HTTP vs. QUIC (Northeastern/Purdue)

“QUIC performs better
than TCP in cellular
networks, but limited by
reordering”

Arash Molavi Kakhki, Samuel Jero,
David Choffnes, Cristina Nita-
Rotaru, and Alan Mislove. 2017.
Taking a long look at QUIC: an
approach for rigorous evaluation
of rapidly evolving transport
protocols. In Proceedings of the
2017 Internet Measurement
Conference (IMC '17). ACM, New
York, NY, USA, 290-303. DOI:
https://doi.org/10.1145/3131365.31
31368

ACM IMC 2017

© 2020 NetApp, Inc. All rights reserved. 42

0.25

0.13

9

1.38

0 5 10

Verizon - LTE

Sprint - LTE

Verizon - 3G

Sprint - 3G

Reordering (%)

0 0.02 0.04 0.06

Verizon - LTE

Sprint - LTE

Verizon - 3G

Sprint - 3G

Loss (%)

HTTP vs. TCP (Northeastern/Purdue)

“QUIC is very unfair to
TCP, despite both using
CUBIC”

Arash Molavi Kakhki, Samuel Jero,
David Choffnes, Cristina Nita-
Rotaru, and Alan Mislove. 2017.
Taking a long look at QUIC: an
approach for rigorous evaluation
of rapidly evolving transport
protocols. In Proceedings of the
2017 Internet Measurement
Conference (IMC '17). ACM, New
York, NY, USA, 290-303. DOI:
https://doi.org/10.1145/3131365.31
31368

ACM IMC 2017

© 2020 NetApp, Inc. All rights reserved. 43

Flow Avg.
Tput

QUIC vs.
TCP

QUIC
TCP

2.71
1.62

QUIC vs.
TCPx2

QUIC
avg(TCP)

2.8
0.83

QUIC vs.
TCPx4

QUIC
avg(TCP)

2.75
0.41

5Mbps bottleneck link, RTT=36ms, buffer=30 KB

Before I go...

© 2020 NetApp, Inc. All rights reserved. 44

§ QUIC WG is open to all
§ Use the mailing list
§ Discuss issues/PRs on GitHub
§ Participate in meetings

§ https://quicwg.org/
will get you started

§ You can talk to us first, too

§ “Note Well” – disclose IPR

§ IETF is open to all

§ 3x meetings/year, next:
§ Vancouver, March
§ Madrid, July
§ Bangkok, November

§ Grants for academics:
§ ACM/IRTF ANRW workshop

(travel grants, only students)
§ IRTF Chair discretionary fund

(need strong reason)

§ https://quicwg.org/ links
to a list of implementations

§ Many are open source and
live on GitHub

§ Contact maintainers and
start issues/PRs

How to participate?

© 2020 NetApp, Inc. All rights reserved. 45

© 2020 NetApp, Inc. All rights reserved. 46

Thank you

Questions later?
Email lars@netapp.com

