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Introduction


  Multiple paths between end-to-end hosts 
•  Many hosts are equipped with  

multiple network interfaces 
  Transmitting data over multiple paths 

•  Increase resource allocation with  
improved reliability and load balancing 
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Multipath Transport Protocols


  Multipath connection 
  An entity over which applications communicate between 

transport layer endpoints (EP) 
  Provide the same communication primitive through the socket as 

well as general transport protocols (i.e., a reliable and ordered 
byte stream) 

  Subflow 
  An entity over which the endpoint transmits a flow along a path 
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Problem Statement


  Existing multipath transport 
protocols adopt TCP’s algorithm 
to each subflow (e.g., pTCP, 
mTCP, CMT) 

  The endpoint of the multipath 
connection uses the shared 
bottleneck unfairly 
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Approaching fair utilization of the shared 
bottleneck


  How do we achieve TCP-friendly multipath connections? 
•  Aggregate congestion control approach (e.g., E-TCP, CM) 

•  Share the congestion information between subflows 
•  Don’t work between subflows along different paths 
•  Cause performance issue 

•  Shared bottleneck detection approach (e.g., mTCP) 
•  Take time to detect shared bottleneck 

•  Weighted congestion control approach 
•  Apply the weight to congestion control of subflows 

•  Each subflow independently behaves based on its own 
congestion information (i.e., cwnd, RTT measurement) 

•  Work even if each subflow traverses distinct paths 
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  The sum of the throughput of subflows should be equal 
with TCP at the shared bottleneck 

  We define the weight of TCP is 1, so maintain the sum of 
weight of subflows to 1 in the multipath connection 
  One subflow with the weight D achieves D times throughput TCP 

Approaching fair utilization of the shared 
bottleneck


Subflow1 with weight 2/3


Subflow2 with weight 1/3


TCP


Shared bottleneck




Applying the AIMD parameters for each 
subflow based on the weight 


  Based on the weight of the subflow (D), we determine its 
AIMD parameter (additive increase parameter “a” and 
multiple decrease parameter “b”) 

  We adopt AIMD(D2, 1/2) for D times throughput 
compared to TCP (using AIMD(1, 1/2)) 
   based on the response function and simulation results (MulTCP 

and PA-MulTCP cannot fit D<1) 9 
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Slow-start behavior of subflows


  We use conservative increase behavior with the same 
window size of TCP at the beginning of the transmission 
and after RTO


time


cwnd

TCP


Throughput proportional  
(using D times initial window size)


Transient effect proportional


Increase the window size by 
D packets per reception of an 
ACK




How do we use spare bandwidth of 
disjoint links?


  Disjoint links can have 
different spare bandwidth 

  We have to adjust the weight 
of subflows to bypass the 
limitation of spare  
bandwidth  

  Detect spare bandwidth 
limitation by comparison of 
throughput between subflows 
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Detection of spare bandwidth limitation


  Comparison of each subflow based on the value which 
has deducted the effect of the weight and RTT 

  We reduce the weight of the subflow with the smallest Twr 
  At the same time increase the weight of the highest Twr  

  We change the weight of subflow with more outstanding 
weight more conservatively 

•  Maintain aggressiveness of subflows achieving 
better throughput 
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Experimental results (Weighted AIMD 
flows v.s. TCP flows)


  Throughput proportion of weighted AIMD (weight < 1) 
flows compared to TCP
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Experimental results (Bundles of WAIMD 
flows v.s. TCP flows)


  Comparison between aggregate of WAIMD flows and TCP
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Behavior on disjoint bottlenecks


  Our algorithm converges to equal resource allocation 
between endpoints across bottlenecks, similarly to 
Kelly’s and Key’s resource pooling (but equal window 
allocation) 
  Discussion: Should we achieve an equal resource allocation for 

per-flow fairness? or per-connection? 
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Conclusion and Ongoing work


  Conclusion 
  Our scheme achieves TCP-friendliness of multipath 

communication for coexistence of TCP and multipath 
transport protocols 
  Weighted congestion control approach 

  We find out that our scheme achieves TCP friendliness 
of the bundle of multiple subflows through experiments  

  Ongoing work 
  Evaluation and optimization of convergence speed and 

stability 
  Investigation for the other fairness metric (e.g., 

proportional fairness, cost fairness) 
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