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Abstract

In the current Internet architecture, communications are based on IP addresses. IP addresses

serve both as identifiers for applications, and topological locators for data transmissions. This

dual role is however becoming problematic, in particular in mobility scenarios. The Host Idendity

Protocol (HIP) introduces a new namespace, composed of Host Identities (HIs), which allows the

separation of these roles. While IP addresses are still used as locators to transmit data, HIs take

the role of identifiers in applications.

HIP communications are based on two different protocols. First, the HIP protocol itself, for the

establishment and management of communications. Second, a security protocol, which is usually

IPsec ESP, to exchange user and application data in a secured way.

To enable HIP communications over the public Internet, the protocol must be adpated to the

possible presence of middleboxes, and especially Network Address Translators (NATs). NATs are

likely to prevent the proper transmission of HIP and ESP traffic. For this reason, specific measures

must be defined in the protocol to allow NAT traversal.

The present thesis proposes a protocol extension which provides NAT traversal support for

HIP communications. This extension is based on UDP-encapsulation mechanisms, the use of

Bound End-to-End Tunnel (BEET) mode ESP Security Associations, and relay mechanisms with

an enhanced Rendezvous Server (RVS).
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Chapter 1

Introduction

In this introduction, we will first describe the general context of the thesis. We will then introduce

the new Host Identity Protocol (HIP) and the related issue that the present thesis proposes to solve.

1.1 General Network Architecture

In current networks, communications are usually described with the ISO/OSI Network model. This

model is composed of seven layers presented in Figure 1.1. Each layer uses functions from lower

layers and provides new functionalities to upper layers. Communication protocols are generally

associated to one specific layer. In particular the third and forth layers play an important role in

Internet communications. The third layer, designated asNetwork Layer, is usually managed by

the Internet Protocol (IP, [1] and [2]). The forth layer, designated asTransport Layer, handles the

data segments which are transmitted in IP packets. Typical protocols for the transport layer are

Transmission Control Protocol (TCP, [3]) or User Datagram Protocol (UDP, [4]).

The Internet Protocol defines one of the two main namespaces currently used in the Internet,

the namespace composed of IP addresses. The second main namespace is composed of Domain

Name System (DNS) names. While DNS names are used as identifiers on application level, IP

addresses have a larger role and are used in the ISO/OSI Network model from the network layer

to the application layer. From the network layer point of view, an IP address is bound to a network

interface and is used to determine the location of this interface in the whole network. If a host

modifies its network connection, its IP address will change accordingly to represent the location of

the new interface. This property can be described as thelocator role of an IP address. IP addresses

are however also used in upper layers and designate in that case the end-hosts of a communication.

As such, IP addresses are not meant to change during ongoing communications. This second
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Figure 1.1: ISO/OSI seven-layer network model.

property is referred to as theidentifier role of IP addresses. Thus IP addresses have a dual role of

locators and identifiers.

1.2 Introduction of a New Namespace

The dual role of IP addresses previously mentioned, is becoming problematic for several reasons.

First, the version 4 of the Internet Protocol, based on 32-bit addresses, remains very widely used in

comparison to version 6. Therefore, the IP address namespace suffers from the increasing number

of hosts connected to the Internet and the lack of IPv4 addresses. Furthermore, the increasing

mobility of devices connected to the Internet implies new requirements which are not compatible

with the duality constraint of IP addresses. Multihomed services can also encounter difficulties

due to this duality.

A reflexion to solve these problems has led to the development of the Host Identity Protocol

(HIP). HIP introduces a new namespace composed of Host Identities (HIs). A Host Identity is a

cryptographic entity which corresponds to an asymmetric key-pair. The public identifier associated

to a HI is consequently the public key of the key-pair. Each host may own several HIs, but a given
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HI is uniquely bound to a single host.

The new identity domain introduced by HIP enables the separation of the roles of IP addresses.

While IP addresses keep their locator role in the network layer, HIs will assume the identifier role

in upper layers. Therefore, considering the ISO/OSI Network model, the HIP protocol introduces

a new layer between the network and transport layers (see Figure 1.2).

Figure 1.2: Common ISO/OSI network model and introduction of the Host Identity layer in the

HIP network model.

In the HIP layer and in upper layers, Host Identifiers replace IP addresses. The conversion

between a Host Identity and the corresponding IP address is established in the HIP layer. To allow

legacy applications to easily use HIs instead of IP addresses, HIP defines two types of identifiers

that are numerical values of the same length as common IPv4 or IPv6 addresses. The main iden-

tifiers are 128-bit Host Identity Tags (HITs) and a limited version of them are 32-bit Local Scope

Identifiers (LSIs).

1.3 HIP Communications

The introduction of a new namespace and the use of the new HIP protocol implies a new way

to establish communications between two hosts. HIP communications are divided in two main
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phases : the HIP Base Exchange and the secured data transfer.

The HIP Base Exchange uses specific HIP packets to establish a connection between two end-

hosts, represented by their Host Identities. The resulting communication is therefore based on a

pair of HITs or LSIs. The Base Exchange also allows the exchange and negociation of parameters

and cryptographic keys for the communication.

After the Base Exchange is completed, the end-hosts can establish secured communications,

based on HIs, and exchange data in a secured way. The data transfer relies on an existing end-to-

end security protocol, which is typically but not necessarily the IPsec ESP protocol.

1.4 Network Structure and Middleboxes

The current Internet is organized in a multitude of interconnected networks and sub-networks.

When two hosts establish a connection between each other, the traffic of their communication

traverses a lot of devices which may simply route and forward it, but may also analyse and apply

some modifications to it. Such devices that analyse and modify the data which go through them are

designated as middleboxes. Several types of middleboxes exist, the best known being firewalls and

Network Address Translators (NATs). The role of firewalls is mainly to block or forward traffic

from or to a sub-network, according to a local security policy. NATs however have a more complex

behavior.

One of the main purpose of NATs is to deal with the IPv4 address scarcity. Network address

translation indeed consists in modifying the source and destination addresses contained in the head-

ers of IP packets. In that way, NATs allow several hosts on a private network (and consequently

configured with private IP addresses) to use a single public IP address to access the Internet. For

example all the requests going from the private network to the Internet have a private address as

source address in the private network. When they pass through the NAT, the source address is re-

placed by the public IP address of the NAT before they are forwarded to the public Internet. When

replies come back to the NAT, the destination address is then replaced by the proper address of the

private host which sent the request, according to a mapping table that the NAT keeps up-to-date.

There is not a single way to process network address translation. Several types of NAT exist,

that follow various rules. NATs can not only modify addresses, but may also change the transport

layer protocol port numbers of the data that traverse them. Another important aspect of NATs

is that connections can only be initiated from the private network behind the NAT. Indeed NATs

will prevent incoming connections from the public Internet, because no entry will exist before-

hand in the NAT mapping table. All these features of NATs have repercussions on the end-to-end
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connectivity principle of the Internet.

1.5 Contribution

Since middleboxes are widely used in the current Internet, they have to be taken into account for

the development of new protocols. In particular HIP communications have to take care of the

possible presence of NATs between end-hosts. As previously explained, HIP communications

are divided in two phases and each of them may encounter problems with NAT traversal. The

first phase, the HIP base exchange, is based on specific HIP packets. Since HIP is still under

development and NATs generally do not forward unknown traffic, HIP packets may be blocked by

NATs. Furthermore, a well known problem of NATs consists in the invalidation of transport layer

checksums which are based on IP addresses. Consequently the HIP base exchange is likely to fail

due to the presence of NATs between the end-hosts. The second phase of HIP communications is

based on another protocol which may also encounter difficulties with NAT traversal. This is the

case in particular for the IPsec ESP protocol.

For these reasons the HIP protocol needs some enhancement to support NAT traversal. The

present thesis proposes an extension of HIP providing such functionalities. In Chapter 2, a more

precise description of HIP and IPsec specifications will be given. In Chapter 3, we will then

present a NAT traversal solution articulated around two main points : the UDP encapsulation of

transmitted data and the use of a specific IPsec ESP mode, namely the BEET mode. The extension

distinguishes between two different cases due to the asymmetry of NAT behavior. First the case

where only the initiator of a HIP communication is located behind a NAT, and second, the case

where also the responder of the communication is protected by a NAT.

In Chapter 4, the work accomplished in a HIP implementation project, namely OpenHIP, will

be presented. Eventually, some future work will be described in Chapter 5 and the thesis will be

concluded in Chapter 6.
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Chapter 2

Protocol Overview and Problem

Description

In this chapter, we describe first the protocol specifications which are necessary to well understand

the main functionalities of the corresponding protocols, the NAT traversal issue in the HIP context

and the proposed extension to solve it. More details about the protocols are nonetheless available

in the cited references.

After HIP and IPsec descriptions, some precisions are given about NAT functionalities and the

NAT traversal issue is eventually exposed.

2.1 Host Identity Protocol

In the present section, we present the current status and main specifications of the Host Identity

Protocol.

2.1.1 Current Development of HIP

The Host Identity Protocol is currently developed in two Internet Engineering Task Force (IETF)

and Internet Research Task Force (IRTF) entities, namely the IETF HIP Working Group and the

IRTF HIP Research Group. These groups are chartered to publish documents describing the spec-

ifications of the protocol.

The fields currently handled by these groups are following :

• HIP main architecture

• HIP Base Exchange specifications
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• IPsec transport-mode ESP in HIP communications

• DNS record extension for HIP

• End-host mobility and multihoming with HIP

• HIP Rendezvous extension

• Extension for the registration to various services

A new field will be added to this list with the present work about NAT traversal for HIP com-

munications.

In addition, several open-source projects implementing HIP specifications are currently under de-

velopment.

• The OpenHIP project, for MS Windows and Linux platforms. Mainly developed by The

Boeing Company.

• The InfraHIP project (previously HIPL/HIP for Linux project), for Linux operating systems.

Mainly developed by the Helsinki Institute for Information Technology (HIIT).

• The HIP for inter.net project, for BSD/Linux operating systems. Mainly developed by Eric-

sson NomadicLab.

HIP protocol specifications are described in several IETF documents corresponding to the

fields previously mentioned. In particular the main architecture of the protocol is defined in [13].

In the next sections, the main properties of the protocol will be presented. The HIP Base Exchange

will first be described in Section 2.1.2. Then the secured data transfer phase will be exposed in

Section 2.1.3. The two following Sections 2.1.4 and 2.1.5, will present the HIP node discovery

system and the mobility management.

2.1.2 HIP Base Exchange

The first phase of a HIP communication is the HIP Base Exchange. Specifications for this phase are

described in [14]. The main role of the base exchange is to establish an IP-layer communications

context between two end-hosts designated by their Host Identities. This context is calledHIP

associationand is kept up-to-date by procedures defined in the HIP protocol.

Both base exchange and updating procedure are based on the exchange of HIP packets between

the communicating hosts. Different types of HIP packets exist but they all have the same structure
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described in Section 2.1.2.1. The base exchange is more precisely described in Section 2.1.2.2 and

the updating procedure is exposed in Section 2.1.5.

2.1.2.1 HIP Packet Structure

All the packets used by the HIP protocol have the same structure composed of a common HIP

header presented in Figure 2.1, followed by various parameters encoded in a Type-Length-Value

(TLV) format.

Figure 2.1: Structure of the HIP packet header.

The HIP header has the structure of an IPv6 extension header and contains the following fields :

Next Header is the common IPv6 next header protocol number.

Header Length is the total length of the HIP header and the following HIP parameters, in 8-bytes

units and excluding the first eight bytes.

Packet Type is the HIP packet type number.

Version is the version number, currently 1.

Reserv. corresponds to three reserved bits, which must currently be zero.
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Checksum is calculated above the whole HIP packet, including HIP parameters. It is determined

in the same way as TCP or UDP checksums, using a pseudo-IPv4 or pseudo-IPv6 header

containing the IP addresses of the source and destination hosts.

Controls contain information about the structure of the packet and capabilities of the host.

The HIP header also contains the two 128-bit representations of Host Identities, namely Host

Identity Tags (HITs), of the packet sender and receiver. The parameters that follow the HIP header

depend on the packet type.

2.1.2.2 HIP Base Exchange Procedure

The HIP Base Exchange is a four packet exchange between two end-hosts designated asinitiator

and repsonder. The first packet, I1, is sent by the initiator to trigger the base exchange and the

creation of a HIP association. The next two packets, R1 and I2, are respectively sent by the

responder and the initiator, and are used to make a Diffie-Hellman key exchange which enables

the generation of a session key. These two packets also carry a puzzle and its solution. The puzzle

is a cryptograhpic challenge sent by the responder, that the initiator must solve before continuing

the base exchange. Finally, after validation of the I2 packet, the responder concludes the base

exchange by sending the fourth packet, R2.

The last three packets of the base exchange contain a signature which enables the receiver to

check the authenticity of the packet, using the sender’s Host Identifier as authentication key.

The HIP base exchange is illustrated in Figure 2.2.

After the reception and validation of the R2 packet, a HIP association is established between

the initiator and the responder. This association is characterized by the pair of Host Identities of

the two end-hosts.

2.1.3 Secured Data Exchange over IPsec

After the HIP Base Exchange is completed, the associated hosts can in a second phase establish se-

cured communications and exchange various data. HIP uses on this purpose an end-to-end security

protocol. Typically, the user data in HIP communications are encrypted with IPsec ESP transport

mode. The IPsec ESP protocol and its specificities are presented in details in Section 2.2.

In the case of IPsec ESP transport mode, authentication and encryption transforms are negoci-

ated during the HIP Base Exchange. The keys used to set up the ESP Security Associations (SAs,

see Section 2.2) are drawn from the keying material generated during the Diffie-Hellman exchange

12



Figure 2.2: HIP Base Exchange procedure.
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of the base exchange. The Security Parameters Indices (SPIs, see Section 2.2) of inbound and out-

bound SAs are also transmitted during the base exchange. Each end-host defines the SPI of its own

inbound SA and sends the value to its peer. The SPIs are transmitted in the HIP parameters of I2

and R2 packets. Then the SPIs contained in each ESP-encrypted user data packet are used to deter-

mine the HIP association to which the packet is related, because Host Identifiers are not included

in these data packets. Thus the HIP base exchange plays also the role of ESP setup exchange.

IPsec ESP specifications for HIP communications are described in [15].

2.1.4 HIP Node Discovery

Before establishing a HIP communication, a host willing to communicate with another host, must

first determine the Host Identity and the current IP address of this last host. Usually the initiator of

the communication does not know this information beforehand. This is also the case for general

communications over the Internet. Usually, the initiator knows only its peer by a Fully Qualified

Domain Name (FQDN). To determine the corresponding IP address, the initiator performs first a

DNS lookup. DNS servers indeed register the mapping between FQDNs and IP addresses. A DNS

lookup consists therefore in sending a request containing a FQDN to a DNS server. The DNS

server then sends a reply containing the IP address(es) corresponding to the requested FQDN.

To enable HIP node discovery with a similar mechanism, some improvements of DNS servers

and DNS mechanisms are required. An extension of DNS records for HIP has been developed in

[16]. New DNS Resource Records (RRs) are defined in this extension to enable mappings between

FQDNs and HIs/HITs. Thus a HIP node, which wants to be reachable by other nodes, must register

its FQDN and current IP address, and also its HI/HIT in DNS servers.

The HIP node discovery mechanism is consequently based on two DNS lookup procedures.

If the initiator of a HIP communication knows only the FQDN of the host it wants to contact, it

must first perform a DNS lookup to determine the HIT of its peer. The initiator sends a request,

containing a FQDN and asking for the corresponding HIP record, to a DNS server. The DNS

server then sends the reply containing the HI and HIT bound to the FQDN, back to the requester.

In a second step, the initiator performs a standard DNS lookup to determine the current IP

address of its peer. The initiator sends a request for the IP address corresponding to the peer

FQDN, to the DNS server. The server then replies with the related IP address.

Eventually, the initiator can deduce from the two DNS answers the mapping between the HIT

and the IP address of its peer. Knowing both HIT and IP address of the peer, the initiator can

trigger the base exchange to establish a HIP communication with it.
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The double lookup mechanism is represented in Figure 2.3.
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Figure 2.3: HIP node discovery. The initiator performs two DNS lookups, one to determine the

HIT of the responder, the second to determine its IP address. The initiator then begins the HIP

Base Exchange.

2.1.5 Mobility with HIP

One of the main purpose of HIP is to allow hosts to move and modify their network connection

without resetting their ongoing communications. Since HIP decouples the identifier and locator

roles of IP addresses, it can easily introduce a new mobility management. Transport layer com-

munications are based on Host Identities, so that IP addresses can be modified without transport

and upper layers being affected by this modification. The HIP protocol needs however to define

a structure to update the mapping between HIs and IP addresses in the HIP layer. This is the role

of HIP UPDATE packets. Specific considerations about mobility with HIP are discussed in [17,

Mobility with HIP].

When a host modifies its network connection and thus its IP address, it must send a HIP

UPDATE packet to its peers to alert them about its new location. This HIP UPDATE packet

containing LOCATOR parameters (basically the new IP address at which the mobile host can be

reached) is then acknowledged by the peers with another HIP UPDATE packet.
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When IPsec ESP transport format is used to protect user data transfers, the update procedure

consists in a three or four-packet exchange between the mobile host and each of its peers. This

procedure is defined in [15].

Three different cases are possible, depending on the need of rekeying the ESP security asso-

ciations. In every case, the mobile host must first indicate in a HIP UPDATE packet its new IP

address, but also the old and new values of the incoming SA SPI. The peer then replies with an-

other HIP UPDATE packet containing its own old and new SPI values. This second packet is sent

to the new IP address of the mobile host, so that this new IP address can be checked by the peer.

The IP address is validated by a third HIP UPDATE packet sent by the mobile host and which

plays the role of an acknowledgement.

If no SA rekeying is processed, the update procedure is limited to this three-packet exchange

and the old and new SPI values indicated in the UPDATE packets are both set up to the values of

the pre-existing SA SPIs.

A second case appears if the mobile host decides to rekey the SAs during this update procedure.

In such case, the new SPI values indicated in the UPDATE packets correspond to the new values

chosen for the new SAs. Diffie-Hellman parameters may also be added to the UPDATE packets if

new keying material needs to be generated. These two first cases are represented in Figure 2.4.

The third possible case happens when the SA rekeying procedure is decided by the peer and

not the mobile host. In that case, the real new SPI values and rekeying parameters are translated to

the second and third HIP UPDATE packets. Consequently a forth UPDATE packet is sent by the

peer to acknowledge and conclude the update procedure. This case is represented in Figure 2.5.

The specifications previously described about the HIP protocol, are the main points to consider

for the development of the NAT-traversal extension presented in the following chapters of the

present thesis. The next section describes the main specifications concerning IPsec protocols.
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Figure 2.4: HIP UPDATE procedure initiated by a mobile host. No SA rekeying is processed or

the procedure is directly initiated by the mobile host.
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Figure 2.5: HIP UPDATE procedure initiated by a mobile host. SA rekeying procedure is decided

by the peer.
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2.2 IPsec

IPsec stands forIP security. It is a standard which provides security for IP communications by

encrypting and/or authenticating IP packets. IPsec is based on two main cryptographic protocols,

namely Encapsulating Security Payload (ESP) and Authentication Header (AH).

The main architecture of IPsec is described in [5]. ESP specifications are described in [7] and

AH specifications in [6].

2.2.1 IPsec Management

IPsec protocols provide security for communications on the network layer, regardless to the trans-

port layer protocol effectively used. To protect the transmitted data, IPsec protocols can encrypt

and authenticate the IP packets with various algorithms. To determine which security protocol and

which algorithm to use for a specific communication, the IPsec management is based on Security

Associations (SAs).

A Security Association corresponds to an unidirectional flow of data between two specific hosts

and is uniquely identified by a triple consisting of a Security Parameters Index (SPI), a destination

IP address, and a security protocol (AH or ESP) identifier.

In addition, the IPsec management relies on two databases :

• the Security Association Database (SAD), which lists all the active SAs and for each SA,

the encryption and/or authentication algorithms used to secure the data flow and also the

necessary keys or parameters of the algorithms.

• the Security Policy Database (SPD), which contains the rules determining whether or not

IPsec must be used for a specific data traffic, and if it the case, indicates the corresponding

SA and security protocol to use.

As previously mentioned, AH and ESP are the main security protocol used in IPsec. While

AH provides only integrity and data origin authentication for IP communications, ESP provides

integrity, data origin authentication and also confidentiality (encryption) of the transmitted data.

Since ESP is the main security protocol used in HIP communications, the next sections focus only

on ESP specificities and do not give any detail about the AH protocol which is out of the scope of

this thesis.
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2.2.2 IP Encapsulating Security Payload

The ESP security protocol allows the encryption and authentication of IP packets. As already

specified above, ESP can use various algorithms to encrypt and authenticate the data. Possible

encryption algorithms are for example DES, 3DES, AES, Blowfish, and possible authentication

algorithms are HMAC-MD5 and HMAC-SHA1. The general concept of ESP consists in encrypt-

ing the data contained in an IP packet, add an ESP header at the beginning of the packet and add

an ESP trailer with an authentication field at the end of the packet. However, two different modes

are defined to process ESP transform, thetransportmode and thetunnelmode. These modes are

respectively described in Section 2.2.2.2 and Section 2.2.2.3. In the next sub-section, we describe

first the ESP packet format.

2.2.2.1 ESP Packet Format

The format of an ESP packet does not depend on the ESP mode used for a specific SA. The

structure of the packet is described in Figure 2.6

Figure 2.6: Format of a common ESP packet.

An ESP packet is composed of the following fields :

Security Parameters Index (SPI) is a 32-bit identifier which indicates in combination with the

destination address of the packet and the security protocol used, to which SA the packet is

related.

Sequence Numberis used to verify the sequence of received ESP packets.
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Payload Data contains the encrypted data which corresponds to an entire IP packet or to its pay-

load (see following sections).

Padding is used to extend the length of the encrypted data (corresponding to the Payload Data,

Padding, Pad Length and Next Header fields) to a proper length required by the encryption

algorithm. The padding is used in particular when the encryption is based on a cipher block

algorithm.

Pad Length indicates the number of bytes of the Padding field.

Next Header contains a protocol number which identifies the type of data contained in the Pay-

load Data field.

Authentication Data contains an Integrity Check Value (ICV) computed over the entire ESP

packet minus the present field. Its length is determined by the authentication protocol used

for this ESP packet.

The SPI and Sequence Number fields constitute the ESP header of the packet, while the

Padding, Pad Length and Next Header fields build the ESP trailer.

2.2.2.2 ESP Transport Mode

The ESP security protocol can be processed in two different ways. The first one is the transport

mode. In this mode, the encrypted data contained in the Payload Data field of an ESP packet

correspond only to the payload of the secured IP packet.

An outgoing packet is thus obtained by encrypting the payload of an IP packet and then insert-

ing the ESP header between the original IP header and the encrypted data, and the ESP trailer at

the end of the packet. Finally the authentication field is computed and put at the end of the packet.

When an incoming packet is encrypted with ESP, its decryption procedure consists in verifying

the authentication data, removing the ESP header and trailer and decrypting the payload data. A

new IP packet is then built with the original IP header of the incoming packet, and the decrypted

data as payload.

An example of an IP packet containing TCP data, secured with ESP transport mode, is pre-

sented in Figure 2.7

2.2.2.3 ESP Tunnel Mode

A second way to apply ESP transform to an IP packet is the tunnel mode. In this mode, the

ESP packet carries an entire secured IP packet. Not only the IP payload but also the IP header is
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Figure 2.7: A TCP-IP packet and its corresponding secured version in ESP transport mode.

encrypted and included in the ESP payload data field. The advantage of the tunnel mode is that

two different IP headers are present in ESP packets. While the external IP header can be modified

by several middleboxes during the transmission of the packet, the internal IP header, included in

the payload of the ESP packet, remains intact. Thus the IP addresses contained in the inner IP

header are not modified during transmission. They can be used by the end-hosts as identifiers to

refer to each other and furthermore the possible checksums based on IP headers and contained in

the data will not be invalidated by the modification of the external IP header. The tunnel mode is

consequently used when the end-hosts are not directly connected but located behind gateways or

middleboxes that may modify the IP traffic between them.

The encryption procedure in tunnel mode consists in the encryption of the entire original IP

packet, the creation of a new external IP header placed in front of the ESP header, the completion

of the packet with the ESP trailer and finally the addition of the authentication field at the end of

the packet.

The decapsulation procedure consists in the verification of the authenticity of the packet, the

decryption of the payload data, and the transmission of the IP packet contained in the payload to

upper network layers.

Figure 2.8 presents an IP packet with a TCP payload and the corresponding ESP packet in

tunnel mode.

22



Figure 2.8: A TCP-IP packet and its corresponding secured version in ESP tunnel mode.

2.2.3 Bound End-to-End Tunnel Mode for ESP

In the previous section, the ESP protocol and its two main modes have been presented. The tunnel

mode offers the possibility to avoid issues due to the modification of IP headers, by encapsulating

the entire original IP packets. This however introduces an overhead in the transmitted amount of

data, because each ESP packet contains two IP headers.

A new mode has been developed, that provides the same advantage as the tunnel mode but

without its overhead. This new mode is called Bound End-to-End Tunnel (BEET) mode and is

described in [20].

The main concept of the BEET mode is to define for each security association, two pairs of IP

addresses. These pairs are respectively designated asinner addressesandouter addresses. Inner

addresses are used in the upper network layers and in particular are the addresses seen and used by

applications. This implies that the checksums contained in the transport layer data are computed

with the inner addresses. Outer addresses are used in the network and lower layers. They are the

IP addresses appearing in the wire to transmit the ESP packets. Inner addresses are strictly bound

to SAs, they cannot be modified. Outer addresses can however change and be updated during the

lifetime of a SA. Furthermore, inner and outer addresses do not need to be from the same IP family.

Inner addresses can be IPv4 addresses while outer addresses are IPv6 addresses, and vice versa.

Since inner addresses are not allowed to change for a given SA, they do not need to be transmit-

ted in each ESP packet. They are exchanged only during the SA establishment phase. Therefore,

the format of ESP packets in BEET mode is the same as in transport mode. The encrypted payload
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data contain only the IP payload, based on inner addresses. The IP header of the generated packet

is however created with the outer addresses.

The encapsulation of IP packets with ESP in BEET mode is processed as follows :

• encryption of the IP payload based on inner addresses,

• addition of the ESP header and trailer, before and after the encrypted data,

• computation of the authentication field, placed at the end of the packet,

• generation of a new IP header based on outer addresses and placed before the ESP header.

The decapsulation of ESP packets in BEET mode is processed as follows :

• verification of the authenticity of the packet,

• decryption of the payload data field,

• generation of a new IP header based on inner addresses and appended to the decrypted data.

The original and encrypted versions of an IP packet containing TCP data is described in Fig-

ure 2.9.

Figure 2.9: A TCP-IP packet and its corresponding secured version in ESP BEET mode.

This new mode for ESP has been presented because it is adequate for HIP communications.

As it is discussed in further sections, the BEET mode is perfectly adapted to the HIP model, in

particular with the possibility to use HITs as inner addresses in HIP SAs.
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2.3 Network Address Translators

The concept of Network Address Translation has been presented in Chapter 1. The corresponding

devices, called Network Address Translators (NATs), have been originally introduced to deal with

the lack of IPv4 addresses. They allow multiple hosts located on a private network to access the

Internet with the same public IP address. Traditional NATs are described in [8].

NAT functioning relies on a mapping table in which the NAT registers for each ongoing com-

munication, the relation between the address of the private host and its own corresponding external

address. The mapping may be based only on IP addresses, but may also include transport layer

port numbers, in particular for UDP and TCP communications. Thus two types of network address

translation are distinguished. First thebasicor staticnetwork address translation, where only the

IP addresses of the packet going through a NAT are translated. And second, the network address

and port translation where both IP addresses and port numbers may be modified by the NAT. In

this second case, the devices are sometimes referred to as Network Address and Port Translators

(NAPTs).

The type of entry in the mapping table of a NAT (or NAPT) and the rules used to establish

a relation between a private address and an external address depend on the NAT itself. Indeed

several types of NAT exist, and the main categories of them are described in the following section.

Since most of the NATs are able to process port translation, we will mainly focus on NAPTs in

the following sections. The termNAT designates however both basic NATs and NAPTs in the

following sections, unless an explicit distinction between them is required.

2.3.1 Different Types of NATs

NATs can be separated into four main categories.

Full Cone NATs map all the requests from a given pair composed of an internal IP address and

a port number, to a single pair composed of an external IP address and a port number. The

internal and external port numbers may be different. All the traffic coming from the public

realm and destined to the specific external IP address/port number pair is translated and

forwarded to the corresponding private host. The NATs do not apply any restriction on the

source address of incoming traffic.

Restricted Cone NATs perform the same translations as Full cone NATs. An internal IP address

and port pair is mapped to a single external IP address and port pair. However, Restricted

Cone NATs apply some restriction to the incoming traffic. An external host with a given IP
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address may send some data to an internal host only if the internal host had sent some data

to the specific IP address of the external host beforehand.

Port Restricted Cone NATs act like Restricted Cone NATs with a source restriction extended to

the port numbers. An external host may send some data with given source IP addressIPa

and source port numberPa to an internal host, only if the internal host had previously sent

some data to the IP addressIPa and portPa.

Symmetric NATs establish mapping based on the internal source IP address and port number and

on the external destination IP address and port number. Thus a traffic coming from a given

pair of internal IP address and port, and destined to a given pair of IP address and port is

mapped to a specific pair of external IP address and port. Another traffic with same source

IP address and port but destined to a different pair of IP address and port, would be mapped

to a different pair of external IP address and port. Furthermore, only the destination host

of the traffic is allowed to reply to the internal host and it must use the same source and

destination pairs as the incoming traffic but with inversed roles.

To explain more clearly the differences between the various types of NATs, some examples of

their behavior are presented in Appendix A. These examples describe which kinds of traffic are

either properly translated and forwarded, or rejected, according to the type of the NAT.

In addition, for all types of NAT, incoming data flows which do not match any entry of the

mapping table are rejected by the NATs. This implies that communications with a host located

behind a NAT must always be initiated by the internal host itself.

Furthermore, when an unsupported transport layer protocol is used, NATs will discard the

corresponding traffic. In particular NATs that perform port translation may translate only traffics

providing transport layer port numbers, thus basically UDP and TCP flows, and prevent all other

forms of traffic. In such cases, NATs become really restricting devices. This point is developed in

the following section.

2.3.2 NAT Traversal Issue with HIP

In HIP communications, the two main phases have to be distinguished in the discussion about NAT

traversal. Since the HIP base exchange and the secured user data transfer generate two different

kinds of traffic, their behaviors regarding NATs must be considered separately.

26



First the HIP base exchange is based on specific HIP packets that have been described in

Section 2.1.2.1. These packets do not contain transport layer port numbers. Therefore, a HIP

traffic may encounter difficulties in NAT traversal. NAPTs that require port numbers to establish a

translation will drop HIP traffic. Furthermore, HIP traffic may even be blocked by less restrictive

NATs. Indeed HIP is still under development and is consequently very likely to be an unsupported

protocol for most of current NATs. In such conditions, NATs which do not know how to handle

HIP packets, will simply discard them.

NAT traversal for HIP packets constitutes a major issue, because most current NATs will not

translate and forward them. Moreover, even NATs that would accept HIP traffic, would also in-

troduce another problem for HIP packets. The problem concerns transport layer checksums. HIP

packets contain a checksum in their header that is calculated with the IP addresses used by the

sending host. Since NATs modify IP headers while translating packets, the transport layer check-

sums become invalid, unless the NATs correct them before forwarding the translated packets. This

is the case for TCP and UDP flows. TCP and UDP checksums are usually recomputed by NATs

before the packets are forwarded. But once again, the majority of current NATs do not have any

HIP support and consequently no checksum correction procedure will be performed for HIP pack-

ets. Eventually HIP packets with wrong checksums are dropped by HIP-aware hosts (either the

recipient of the packet itself, or another intermediary HIP-aware device).

The second phase of HIP communications, the secured data transfer, is also subject to NAT traver-

sal issues. The main security protocol used for this second phase is IPsec ESP and this protocol

encounters similar difficulties for NAT traversal as the HIP protocol. The NAT traversal issues for

ESP are described in [9].

HIP communications are currently based on specifications that suppose direct connection between

the end-hosts, without middleboxes modifying their traffic on the path between them. Therefore,

HIP does not have any support for NAT traversal in its current status. Two solutions are possible

to solve the NAT traversal issue : adapt the NATs to become HIP-aware and handle HIP traffic

properly, or improve the protocol itself to include a NAT traversal support. Since the amount of

NAT devices currently used in the Internet is really high and since it is not reasonably possible

to expect all of them to be updated to become HIP-aware, the first solution does not appear as

feasible. Consequently a support for NAT traversal in HIP specifications is required. This is the

purpose of the present thesis, which provides an extension of HIP to enable NAT traversal.
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Chapter 3

NAT Traversal Extension for HIP

In this chapter, the extension of HIP specifications to provide NAT traversal support is described.

Section 3.1 exposes the general principles of NAT traversal for HIP communications. Sections 3.2

and 3.3 describe more specific details for the case where respectively the initiator or the responder

of a HIP communication is located behind a NAT.

3.1 NAT Traversal : General Principles

In this section, the general priniciples of NAT traversal mechanisms are presented. The NAT detec-

tion mechanism required to determine whether or not NAT-traversal measures must be applied, is

discussed in Section 3.1.1. Then, actual NAT-traversal mechanisms are presented in Section 3.1.2.

3.1.1 NAT Detection

An important phase in a NAT traversal support extension is to determine the presence or absence

of NAT between the communicating nodes, in order to know whether specific measures have to

be taken or not. NAT traversal is a major issue for many protocols and applications, so that vari-

ous NAT detection systems have been developed to inform a host about its status regarding NATs.

Since protocols have already been defined to detect the presence and the type of possible NAT(s)

between a host and a given network, the NAT traversal extension for HIP will rely on such proto-

cols to determine whether or not a HIP node is located behind a NAT. Consequently, no specific

procedure will be developed in HIP. The results of an external NAT detection mechanism are di-

rectly used to adapt HIP nodes behavior towards possible NATs.

A suggested NAT detection protocol is called Simple Traversal of UDP over NATs (STUN)

and is defined in [10]. STUN allows a host to determine whether it is located behind one or several
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NATs and in such case, the type of the encountered NAT(s) as defined in Section 2.3.1.

STUN is a client-server protocol. A STUN client sends a request to a STUN server located

on a public network and can deduce from the replies of the server if it is located behind a NAT

or directly connected to the public network. If the STUN client is located on a private network

protected by a NAT, the server responses also indicate to the client which public IP address the

NAT provided to it.

The principle of STUN consists in an exchange of UDP packets between the STUN client and

the STUN server. The client includes some parameters in the requests to indicate to the server

which kind of IP address or port number it must use to send the replies. A STUN server owns

typically two different IP addresses and thus can use either the IP address to which the request

was destined or the second IP address to send its answer back. The UDP port numbers used in the

responses of the STUN server can also be identical or different from the UDP port numbers used

in the received request packets and which are the port numbers provided by the last encountered

NAT between the client and the server. In that way, the STUN client can deduce from the answers

it receives or does not receive from the server, the type of NATs that separate it from the public

network, and the kind of restrictions these NAT apply to the incoming and outgoing traffics.

Thus in the next sections, we assume that a HIP implementation is coupled to a NAT detection

mechanism (such as STUN) and has direct access to the information that such a system can provide.

The following specifications for HIP are consequently based on the assumption that a host can

always know whether it is located behind a NAT or not, and if necessary which type of NAT

modifies its data flows.

3.1.2 NAT Traversal for HIP Communications

The objective of the present extension of HIP specifications consists in solving the issues due to the

presence of NATs and pointed out in Section 2.3.2. Thus the new specifications must first prevent

all kind of HIP traffic packets from being dropped by encountered NATs, and second prevent these

packets from being invalidated by IP header modifications.

The common solution to the first problem consists in encapsulating every packet of the HIP

communication in UDP packets, so that the transport layer protocol observed by NATs is a well

known protocol, properly translated and forwarded. This solution is especially the procedure rec-

ommended for the NAT traversal support of common IPsec ESP traffic. The UDP-encapsulation

of common ESP packets is described in [11].

Thus the present thesis provides specifications for the UDP-encapsulation of both HIP packets
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and ESP packets used in HIP communications. To prevent the packet invalidation issue, a specific

handling of transport layer checksums is also required and described in the further sections. Even-

tually, the BEET mode for ESP is introduced in the secured data transfer of HIP communications.

The reasons for this choice is explained in Section 3.1.2.2.

3.1.2.1 UDP Encapsulation of HIP Packets

The UDP encapsulation consists in inserting a UDP header between the IP header of a packet and

the original payload of the IP packet. The UDP header format is defined in [4] and described in

Figure 3.1.

Figure 3.1: UDP header format.

The UDP header is composed of two port numbers used to determine to which services the

packets are related, the length of the packet and a checksum. Since the HIP packet header contains

already the length of the packet and a checksum, a possible solution could be to slightly modify the

HIP header by reordering the fields and adding two port numbers, so that the HIP header appears

like a UDP header. This solution has the advantage to reduce the UDP encapsulation overhead

to its minimum. It presents however several issues. First it requires the use of two distinct HIP

headers which is not a suitable solution. But moreover it would divert the use of UDP headers

and mix UDP and HIP protocols. From a protocol design point of view, this appears as a bad and

unclear solution.

Thus the proper way to perform UDP encapsulation consists in including the entire HIP packet

in the UDP payload. This process may duplicate some already present information in the HIP

header, but it is clearer and cleaner than modifying HIP headers to fake UDP headers.

To complete the UDP encapsulation of HIP packets, the mechanism must include a process

to handle HIP header checksums. Since HIP checksums are based on the IP addresses used by

the sending host, they may be invalidated by the IP header modifications performed by NATs.

Furthermore, the UDP header added to the HIP packet introduces a new checksum which will

be maintained valid by the possible encountered NATs. This checksum is sufficient to verify the

integrity of the packet. Consequently the HIP header checksum is not useful anymore and can be

set up to zero.
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The UDP encapsulation and decapsulation procedures for HIP packets are straightforward.

When sending a UDP-encapsulated HIP packet, a HIP implementation that supports the proposed

NAT traversal extension must zero the HIP header checksum before computing the UDP header

checksum. Then it introduces a properly formatted UDP header before the HIP header. The

IP header of the packet will then contain the UDP protocol number instead of the HIP protocol

number in its transport protocol field, and the total length field needs also to be updated.

The UDP encapsulation procedure for a HIP packet is described in Figure 3.2.

Figure 3.2: UDP encapsulation procedure for a HIP packet.

The decapsulation procedure for UDP-encapsulated HIP packets consists first in the verifi-

cation of the correctness of UDP header checksum exclusively. The checksum included in the

HIP header must not be taken into account. Then the UDP header is discarded and the IP packet

containing only the HIP packet is reconstituted and transmitted to the common HIP processing

mechanism.
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3.1.2.2 Secured Data Transfer with BEET-Mode ESP

One of the main decision of the present extension for HIP communications is to replace ESP

transport-mode security associations with ESP BEET-mode SAs for the secured user data transfer.

The main advantage of the IPsec ESP BEET mode over the common ESP transport mode is

the explicit definition of inner and outer addresses. The inner addresses of BEET associations are

used for processing at all layers of the stack, from the IPsec layer to the application layer, whereas

the outer addresses are only used to transmit the final packets on the wire. This explicit distinction

between addresses matches perfectly the IP address role separation that HIP wants to achieve with

the introduction of new identifiers. Indeed, HITs can be used as IPv6 inner addresses because

they all have a role of static identifier, and the hosts current IP addresses are defined as the outer

addresses of the BEET associations and take the role of locators. The end-host IP addresses may be

modified when a mobile host changes its location. The BEET outer addresses can then be updated

accordingly, since they are allowed to be modified during the lifetime of the corresponding BEET

associations.

Furthermore, using BEET associations is helpful regarding NAT traversal issues and is a way

to apply explicitly the measures that the current specifications of HIP assume in a more partial and

implicit way. The transmission of data encrypted with ESP in transport mode is indeed subject to

the checksum invalidation issue. If the secured traffic traverses NATs, the IP addresses contained

in the IP header of the packet received by an end-host are likely to be different from the addresses

used to compute the possible transport layer checksums contained in the encrypted data. Thus

in transport mode, the receiver of the packet does not have the proper information to verify the

correctness of the inner checksums and will then consider the packet invalid. To avoid this problem,

HIP specifications in [13] already indicate to modify the TCP and UDP checksums of the user data

and recompute them using the HITs as IP addresses in an IPv6 pseudo-header. Thus HIP is already

designed to perform some tunnelling for the secured transmission of the user TCP and UDP flows.

Therefore, the use of the BEET mode instead of the transport mode renders this tunnelling

explicit for TCP and UDP flows, and also makes it available for other transport layer protocols.

The tunnelling then solves the checksum invalidation issue for the encrypted user data, because

the checksums will be based on the inner addresses which are known by both end-hosts and do not

change during the communication.

This solution could also be achieved with the common tunnel mode for ESP. However, the

BEET mode has two advantages over the common tunnel mode in a HIP communication context.

First the BEET mode avoids any additional overhead, because the ESP packet structure is similar to
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the transport mode. And second, no additional exchange is required to set up the SAs, because the

BEET mode allows the use of HITs as inner addresses and HITs are already known and transmitted

during the HIP base exchange.

Nonetheless, although the tunnelling property of the BEET mode avoids transport layer check-

sum invalidation, the ESP BEET mode traffic remains subject to the common difficulties of NAT

traversal. The UDP-encapsulation of ESP flows recommended and described in [11] is therefore

still required. However, the encapsulation and decapsulation procedures for ESP BEET mode

packets has not been defined yet. These procedures are thus described in the next section.

3.1.2.3 UDP Encapsulation and Decapsulation Procedures for BEET-Mode ESP Packets

The UDP encapsulation and decapsulation procedures for the common transport and tunnel modes

of ESP are defined in [11]. The procedures for BEET-mode ESP are relatively similar.

The UDP encapsulation is processed according to the following steps :

• The original packet targeted for UDP BEET-mode encapsulation is an IPv6 packet contain-

ing the HITs of the communicating end-hosts as source and destination IP addresses. If any

transport layer checksum is present in the payload data, it must have been computed with the

HITs indicated in the IPv6 header of the packet. The packet must then undergo the BEET-

mode ESP cryptographic processing using the encryption protocol and parameters indicated

in the corresponding BEET SA, as defined in [20].

• The resulting BEET-mode ESP packet is then encapsulated in UDP. For this purpose, a

common UDP header is inserted between the existing IPv6 and ESP headers. The UDP

checksum must be calculated based on a pseudo IP header containing the outer addresses

specified in the corresponding BEET SA. The source and destination port numbers of the

UDP header must also be set up to the values that have to be specified in the SA.

• The resulting UDP packet must then undergo the final step of the BEET-mode encryption

procedure, the IP header processing. During this step, the inner IPv6 header based on HITs

is replaced by a new IP header based on the outer addresses specified in the BEET SA. The

resulting packet can then be sent on the wire.

Figure 3.3 describes the encapsulation procedure for a packet containing a TCP segment.

When a UDP-encapsulated BEET-mode ESP packet is received, the following decapsulation

procedure is performed :
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Figure 3.3: UDP encapsulation procedure for a TCP packet secured with ESP BEET-mode.
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• The UDP header checksum must be verified. If the verification fails, the packet is dropped.

Otherwise the Security Association to which the packet is related, is determined in function

of the destination IP address of the packet, the security protocol used (ESP) and the SPI

indicated in the ESP header. Then according to the authentication algorithm specified in the

SA, the integrity of the ESP packet is checked.

• After the packet integrity has been validated, the payload data of the ESP packet is decrypted

based on the encryption protocol and parameters indicated in the BEET SA. The outer IP

header, the UDP header and the ESP header and trailer are discarded.

• A new IPv6 header is generated based on the inner addresses which are the end-hosts HITs.

This header is then prepended to the decrypted data and the resulting packet is transmitted

to the upper layers of the network stack.

3.1.2.4 Keep-Alive Mechanism

Usually the bindings registered in the mapping tables of NATs have a limited lifetime when they

are not used during a certain time. NATs indeed time the established bindings out if they have

not used them to relay traffic for a given period of time, varying from one NAT to another. To

prevent NAT bindings that support the traversal of UDP-encapsulated HIP traffic from timing out

during times when there is no control (HIP) or data (ESP) traffic, HIP hosts have to send periodic

keep-alive messages.

Such keep-alive mechanisms concern both HIP and ESP traffics. If the UDP port numbers used

by these two types of traffic are different, keep-alive messages have to be generated separately for

each flow, because they would correspond to two different mappings in the encountered NATs

mapping tables.

Typically NATs only act, for security reasons, on keep-alive messages received from hosts

located in the private network that they connect to the public Internet. Consequently those hosts

located behind NATs have to send periodic keep-alive messages for the control and data channels

of all their established HIP associations, if the respective channel has been idle for a specific period

of time. Keep-alive intervals for HIP control and data channels are thus two new parameters that

have to be included in the configuration of HIP associations.

Keep-alive messages can be minimal UDP packets created with the same source and desti-

nation IP addresses and port numbers as the ones used for the corresponding UDP-encapsulated

HIP or ESP flow. The keep-alive message suggested in [11] for common UDP-encapsulated ESP
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flows is a basic UDP packet which carries a payload constituted of a single octet. The single-octet

payload is set up to the value 0xFF. Such a packet is illustrated in Figure 3.4.

Figure 3.4: Common keep-alive packet for UDP-encapsulated ESP flows, constituted of a UDP

packet with a one-byte payload.

Usually keep-alive messages are simply discarded by their recipient. However, the present

extension of HIP uses keep-alive packets for another purpose than just keeping the NAT bindings

alive. Indeed, keep-alive packets are also used in special cases to determine the public IP addresses

and port numbers used by NATs to forward the HIP and ESP traffics. In such conditions, a basic

UDP packet with a one-byte payload is not sufficient and more elaborated keep-alive packets are

required.

One of the particuliar cases consists in the reactivation of ESP channels after a mobile host has

changed its location. This case, which is described in Section 3.2.5, may require the sending of a

specific packet that enables the static host to determine which ESP channel has been reactivated

and to which SA it is related. For this purpose, the specific packet must contain an ESP header

corresponding to the reactivated ESP channel. Since the encrypted data are not important in this

context, a single-octet payload, encrypted with ESP, would be sufficient. The suggested packet is

consequently a normal UDP-encapsulated ESP packet, carrying an encrypted one-byte payload of

value 0xFF. This packet is described in Figure 3.5.

Figure 3.5: Specific keep-alive packet for UDP-encapsulated ESP flows, suggested for the reacti-

vation of ESP channels.
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3.1.2.5 UDP Channels and Port Numbers

The present NAT traversal extension for HIP communications defines the UDP-encapsulation of

both HIP control and ESP data traffics. An important issue to solve is whether to use the same

UDP channel for both types of traffic or transmit them on two separated channels. A related issue

is also to determine the single or multiple UDP port numbers to use for the encapsulated flows.

During the development phase of HIP, port numbers can be chosen freely in the range ofDynamic

and/or Private Ports(from 49152 through 65535). However, the official definitive port numbers

will have to be provided and registered by the Internet Assigned Numbers Authority (IANA).

Transmitting the encapsulated HIP and ESP flows on the same UDP channel or transmitting

them on two different channels present both advantages and detriments.

The main advantage of using a single channel for HIP and ESP traffic is that it facilitates the

UDP channels management. In particular in the mobility scenarios, only one UDP channel per

HIP association has to be taken care of. For example, if a mobile host new location is protected by

a NAT, the activation of a new UDP tunnel and the suppression of the possible former one has to

be performed only once for each HIP association. If HIP and ESP traffics are encapsulated in two

different UDP flows, the procedure has to be executed separately for each protocol. Furthermore,

using a single channel requires the introduction of only one keep-alive system, which will operate

for both HIP and ESP traffics.

However, using a single UDP channel for both HIP and ESP traffics also implies the definition

of a multiplexing and demultiplexing mechanism to allow end-hosts to distinguish between the two

types of encapsulated traffic. This would therefore introduce an extra complexity in the protocol

specifications.

Moreover, some UDP port numbers have already been defined in [11] for the common UDP-

encapsulated ESP traffic. To facilitate the implementation and integration of HIP in current plat-

forms, using the same UDP channels for HIP communication ESP traffic as common ESP traffic

would be a good option. The current specifications of UDP-encapsulated IPsec ESP assign the

port number 4500 to UDP-encapsulated ESP transport-mode and tunnel-mode packets. This port

number is also shared with the Internet Key Exchange (IKE) protocol [12]. The distinction be-

tween UDP-encapsulated IKE and IPsec ESP packets is done based on the SPI field of the ESP

headers. This port number has been registered for IKE and IPsec ESP traffic only. Consequently

UDP-encapsulated HIP packets will not be authorized to use this port number.

To be able to join the ESP traffic of HIP communications to the common ESP traffic, and also

to avoid the introduction of an additional multiplexing mechanism, the present extension for HIP

37



is based on the use of two separated UDP channels for UDP-encapsulated HIP control and ESP

data flows.

This choice implies the use of two different port numbers and the separated management of

HIP and ESP flows. In particular two separated keep-alive systems are required and updating

procedures in mobility scenarios have to be defined explicitly for both HIP and ESP protocols.

The port number chosen for UDP-encapuslated HIP traffic is 50500. The port number for

UDP-encapsulated ESP traffic can not be set up to the encapsulated IKE/IPsec ESP port number

(4500) because the BEET mode, still under development, has not been recognized as regular IPsec

ESP mode yet. Thus another experimental port is currently defined for UDP-encapsulated BEET-

mode ESP packets in HIP communications. The chosen port number is 54500.

HIP implementations that support NAT traversal, must therefore listen for incoming traffic on

UDP ports 50500 and 54500.

Since HIP is still under development, it has to be noticed that the choice of separated UDP

channels is not a definitive decision and may be modified in future versions of the specifications. In

particular the choice of a unique port number for both HIP and ESP flows may finally be adopted,

based on the feedback of experimental implementations, which state that the avoided additional

complexity of multiplexing mechanism is replaced by an extra complexity in the management of

UDP channels in mobility scenarios (see Section 3.2.5).

3.2 First Case : Initiator Behind a NAT

The general principles of the NAT traversal extension have been described in the previous sections.

Nonetheless, precise specifications of HIP behavior still have to be defined to determine in which

cases the NAT traversal measures have to be applied, which operations have to be performed and

in particular how to handle mobility scenarios. To achieve this goal, two main cases have to

be distinguished. Since NATs do not have a symmetric behavior towards the hosts located on

their private network and the hosts located on the public network, the NAT traversal extension

differentiates the case where only the initiator of a HIP communication may be located in a private

network protected by a NAT, from the second case where the responder of a HIP communication

may also be located behind a NAT. The former case is handled in the current section, and the

second case is treated in Section 3.3.

In the present section, the responder of a HIP communication is thus assumed to be in the

global Internet. If the initiator of the communication is also located in the global Internet, then

the common HIP specifications can be applied. Otherwise, if the initiator detects the presence of
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a NAT modifying its traffic, it has to apply the NAT traversal measures introduced in the previous

section and more precisely described in the following sections.

3.2.1 HIP Control Traffic

When the initiator of a HIP communication has detected the presence of a NAT from any of the

types described in Section 2.3.1, it must apply NAT traversal measures for the HIP control traffic.

Thus HIP packets and in particular HIP base exchange packets have to be encapsulated in

UDP as described in Section 3.1.2.1. The initiator must use the port number defined for UDP-

encapsulated packets (50500) as destination port number for all the HIP control packets that it

sends. The source port number may be set up to 50500 as well, but the initiator has also the

possibility to choose a random, unoccupied source port. Since the source port number is very

likely to be modified by the NAT translation, the choice of the initiator is not an important matter

for the continuation of the base exchange. Moreover, using a random source port number instead

of a static one renders possible to have multiple clients behind a NAT middlebox that performs

only address translation and no port translation. Nevertheless, if the initiator uses a random source

port number, it must then listen for and accept all HIP control packets arriving on this port until the

corresponding HIP association is torn down. A random source port number must be in the range

of the dynamic and private ports (49152-65535).

The responder of a UDP-encapsulated HIP base exchange must also apply the NAT traversal

measures and encapsulate in UDP all the HIP control traffic of the corresponding association. The

responder must use the port number 50500 as source port number for all UDP-encapsulated control

packets it sends, because 50500 was the number of the port on which it received prior packets from

the initiator. As a source IP address, the responder must use the IP address on which prior packets

from the initiator arrived. Similarly it must use the source IP address and source UDP port of prior

packets from the initiator, as destination IP address and destination UDP port.

Whether or not HIP control packets are UDP-encapsulated does not affect the HIP state ma-

chine. HIP implementations applying the present specifications must process all UDP-encapsulated

control messages equivalently to unencapsulated control messages. The single exception to this

rule concerns IPsec ESP security associations. If the HIP base exchange is UDP-encapsulated,

the secured user data transfer is based on a UDP-encapsulated BEET-mode ESP association (see

Section 3.2.3).

Furthermore, in the case of UDP-encapsulated HIP exchanges, both initiator and responder

must register the source and destination IP addresses and port numbers they have to use to transmit
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HIP packets. These IP addresses and port numbers must be stored independently for each HIP

association.

3.2.2 HIP Base Exchange

As mentioned in the previous section, when the initiator of a HIP communication is located behind

a NAT, it triggers a UDP-encapsulated HIP base exchange. Figure 3.6 describes the HIP base

exchange between an initiator with the private IP addressIP i and a responder with the public IP

addressIP r. The initiator is located behind a NAT, which has the private IP addressIP priv and

the public IP addressIP pub.

The initiator begins the base exchange by sending a UDP-encapsulated I1 packet to the respon-

der. According to the rules previously specified, the source IP address of this I1 packet isIPi and

its UDP source port number ispi. It is addressed toIPr on port 50500. The NAT forwards the

I1 packet but substitutes the sourceIPi with its own public IP addressIP pub and substitutes the

UDP source portpi with pnat.1, which will usually be different frompi.

When the responder receives the UDP-encapsulated I1 packet on the UDP port 50500, it pro-

cesses it according to the common HIP specifications. If it replies with an R1 packet, this packet

uses the destination IP address and UDP port from the previous I1 packet (i.e.IPr and 50500),

as source IP address and UDP source port number. And similarly, the destination IP address and

UDP port of the R1 packet are set up to the source IP address and UDP port of the I1 packet, i.e.

IP pub andpnat.1. The NAT then substitutes the destination of the R1 packet, replacing the pair

IP pub : pnat.1 with IPi : pi.

When the initiator receives the UDP-encapsulated R1 packet from the responder, it processes

the packet according to the common HIP specifications. When the initiator responds with a UDP-

encapsulated I2 packet, it uses the same source and destination IP addresses and the same source

and destination UDP ports that it used previously for sending the corresponding I1 packet. The I2

packet is thus addressed to the destinationIPi : pi, with the sourceIPr : 50500. The NAT again

substitutes the source information, replacing it withIP pub : pnat.2.

When the responder receives the UDP-encapsulated I2 packet destined to the UDP port 50500,

it uses the UDP source port contained in this packet for further HIP communications with the

initiator. It then processes the I2 packet according to HIP specifications. When it responds with an

R2 message, it UDP-encapsulates this message, using the UDP source port of the I2 packet as the

destination UDP port, and sends it to the source IP address of the I2 packet. The responder thus

addresses the R2 packet to the destinationIP pub : pnat.2, and sets up the source asIPr : 50500.
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Figure 3.6: UDP-encapsulated HIP Base Exchange between an initiator behind a NAT and a re-

sponder in the public Internet.
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The NAT will then again replace the destination information in the packet withIPi : pi.

Usually, the I1-R1 and I2-R2 exchanges occur fast enough for the NAT binding to not time out.

This means that the NAT uses the mapping established during the I1-R1 exchange to translate the

I2-R2 exchange. Thus the portspnat.1 andpnat.2 will be identical. However, the mechanism can

handle the case where the NAT state times out between the two exchanges and the I1 and I2 arrive

from different UDP source ports and/or IP addresses.

3.2.3 Security Associations

The next phase of the HIP communication is the secured user data transfer. The corresponding

exchanges are secured with the ESP protocol and thus based on the ESP security associations

defined during the HIP base exchange. When a HIP base exchange is UDP-encapsulated, the HIP

nodes must define UDP-encapsulated BEET-mode SAs instead of the common transport-mode

SAs. In such case, no additional parameter has to be added to the HIP base exchange packets.

UDP-encapsulated BEET-mode SAs require more parameters to be properly defined, in particular

inner addresses, but all necessary parameters are already included in the usual HIP base exchange

packets.

The main differences between the usual transport SAs and the present BEET-mode SAs are the

different ESP mode used, the activation of the UDP-encapsulation and the specific definitions of

IP addresses and UDP port numbers. The management of encryption and authentication protocols

and SPIs occurs in the same way as in the usual case of transport-mode SAs (described in [15]).

Each HIP node must define two SAs for each HIP association in which it is implicated. One

SA is destined to the protection of outgoing data. The second SA is destined to the protection of

incoming data coming from the peer. The inbound SA of a HIP node is symmetrically defined to

the outbound SA of its peer, and vice versa.

The initiator of the base exchange must also initiate the BEET-mode ESP exchange, by either

sending a UDP-encapsulated ESP data packet, or a specific keep-alive packet (as defined at the

end of Section 3.1.2.4) if it has no data to send. This must occur immediately after the base

exchange has succeeded. At this moment the initiator of the base exchange has indeed completed

the definition of its SAs and can therefore send secured data to the responder. This is however not

the case for the responder. Since SAs must contain the IP addresses and UDP port numbers to use,

the responder must wait for the first UDP-encapsulated ESP packet coming from the initiator to

know which are the exact IP address and UDP port number used by the last encountered NAT to

forward the ESP traffic. The HIP and ESP traffic are transmitted in two different UDP channels
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and are consequenlty related to different bindings in the NATs. For a given HIP association, the

UDP-encapsulated HIP and ESP flows are likely to arrive to the responder from two different IP-

address/UDP-port pairs. Therefore, the first correct UDP-encapsulated ESP packet arriving after

the base exchange indicates to the responder how to define the source IP-address/UDP-port pair of

the inbound SA, and the destination pair of the outbound SA.

The initiator of the base exchange must use the general port number of UDP-encapsulated

BEET-mode ESP (54500) as destination port for all the UDP-encapsulated ESP packets it sends.

In the same way as UDP-encapsulated HIP traffic, the initiator may use the same port number as

source port, but it can also choose a random, unoccupied port number in the range 49152-65535.

If it uses a random port number, it then has to listen for and accept UDP-encapsulated ESP packets

arriving on this port, and this, until the corresponding HIP association is torn down.

The responder, which is listening for packets arriving on port 54500, must use this port number

as source port for all the UDP-encapsulated ESP packets it sends back to the initiator. And it

must use the source port number of prior UDP-encapsulated ESP packets from the initiator, as

destination port number fot the packets it sends.

The two following sub-sections describes more precisely the parameters of respectively the

initiator SAs and the responder SAs.

3.2.3.1 Initiator Security Associations

The initiator behind at least one NAT defines its SAs during the HIP base exchange. It must define

the parameters of its outbound SA as follows :

IPsec ESP mode :BEET mode with UDP encapsulation,

SPI : the value the responder chose during the base exchange,

Inner source address : the local HIT used during the base exchange,

Inner destination address : the responder HIT used during the base exchange,

Outer source address : the local IP address from which the base exchange packets were trans-

mitted,

Outer destination address : the responder IP address to which the base exchange packets were

transmitted,

UDP source port : the port 54500 or another unoccupied port randomly chosen by the initiator

itself,
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UDP destination port : the port 54500.

Similarly, the initiator must define its inbound SA as follows :

IPsec ESP mode :BEET mode with UDP encapsulation,

SPI : the value the initiator chose itself during the base exchange for the rececption of the ESP

packets coming from the responder,

Inner source address : the responder HIT used during the base exchange,

Inner destination address : the local HIT used during the base exchange,

Outer source address : the responder IP address to which the base exchange packets were trans-

mitted,

Outer destination address : the local IP address from which the base exchange packets were

transmitted,

UDP source port : the port 54500,

UDP destination port : the same port as the UDP source port the initiator defined in its outbound

SA.

3.2.3.2 Responder Security Associations

The responder must define its SAs after the reception and correct processing of the first UDP-

encapsulated ESP packet coming from the initiator. The responder must use the SPI value it chose

itself during the base exchange, to process the incoming ESP packet. Since this packet may have

traversed several NATs, the source IP address and port number it contains are likely to be different

from the values used at the initiator.

The responder must set up its outbound SA as follow :

IPsec ESP mode :BEET mode with UDP encapsulation,

SPI : the value the initiator chose during the base exchange,

Inner source address : the local HIT used during the base exchange,

Inner destination address : the initiator HIT used during the base exchange,

Outer source address : the local IP address from which the base exchange packets were trans-

mitted,
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Outer destination address : the source IP address of the first correctly processed UDP-encapsulated

ESP packet received from the initiator,

UDP source port : the port 54500,

UDP destination port : the UDP source port of the first correctly processed UDP-encapsulated

ESP packet received from the initiator.

The responder similarly defines its inbound SA as follows :

IPsec ESP mode :BEET mode with UDP encapsulation,

SPI : the value the responder chose itself during the base exchange,

Inner source address : the initiator HIT used during the base exchange,

Inner destination address : the local HIT used during the base exchange,

Outer source address : the source IP address of the first correctly processed UDP-encapsulated

ESP packet received from the initiator,

Outer destination address : the local IP address from which the base exchange packets were

transmitted,

UDP source port : the UDP source port of the first correctly processed UDP-encapsulated ESP

packet received from the initiator,

UDP destination port : the port 54500.

3.2.4 NAT Keep-Alives

As already specified in Section 3.1.2.4, when HIP or ESP traffics are idle for a long time, keep-

alive packets must be sent to prevent the NAT bindings corresponding to the HIP communication

UDP channels from timing out and being cancelled.

For a given HIP association, if the UDP encapsulation has been activated, keep-alive mecha-

nisms for both HIP and ESP channels must also be activated. The keep-alive intervals can be set

up separately for the two channels. The interval default value is however the same for both types

of traffic and is defined to 20 seconds.

For the HIP control UDP channel, basic UDP keep-alive packets as described in Section 3.1.2.4

and Figure 3.4 are sufficient to prevent NAT bindings from timing out. However, keep-alive pack-

ets for the HIP channel may also be used for another purpose and require to be related to the
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corresponding HIP association. In such case the keep-alive packet format would be replaced by

HIP UPDATE packets without parameters and UDP-encapsulated as defined in the HIP associ-

ation. The present NAT traversal extension for HIP does not require specific keep-alive packets

for the HIP channel. Consequently HIP keep-alive packets are defined as the basic UDP packets

carrying a single-octet payload. The HIP nodes which need to send a keep-alive packet, must use

the IP addresses and UDP port numbers specified in the corresponding HIP association to generate

the packet.

For the ESP data channel, the generic UDP keep-alive packet for ESP can also be used to

keep the NAT bindings alive. The present extension uses however keep-alive packets for another

purpose which requires the identification of the corresponding HIP association (see Secion 3.2.5).

Thus the specific UDP-encapsulated ESP packet described in Section 3.1.2.4 and Figure 3.5 is

used. Further development of the present extension may want to separate real NAT keep-alives

from the specific keep-alive packets. In this case, both types of packets would have to be taken

into account in HIP specifications and implemented in HIP-aware systems.

When a HIP node has not sent or received secured data from one of its peer for a time exceeding

the ESP channel keep-alive interval, it must send a keep-alive packet. To generate this packet, the

HIP node must use the outbound SA of the corresponding HIP association.

3.2.5 Mobility Management

During HIP communications, HIP nodes are allowed to modify their location. If a HIP host

changes its network connection, it triggers then the update procedure described in Section 2.1.5. In

this section, we consider only the case where the mobile host is the host originally located behind

a NAT.

When the host behind a NAT changes its location, it has to detect the presence of NATs along

the new paths to its peers (using some external mechanism like STUN) before sending any HIP

UPDATE message. Alternatively, it may use some heuristics to conclude that it is still located

behind a NAT, rather than incur the latency of running the external NAT detection first.

The mobile host must then adapt its behavior to the results of the NAT detection. The two

following sub-sections describe respectively the case where the host moves to the public Internet,

and the case where the host stays in the same private domain or moves to another private domain

but remains behind a NAT.
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3.2.5.1 Host Moving to the Public Internet

If the host moves to the public Internet and consequently does not detect any NAT along the new

path to one of its peer, the NAT traversal measures are not necessary anymore. Thus the mobile

host can send unencapsulated HIP and ESP traffic for the association with that peer.

The mobile host then sends a regular, unencapsulated HIP UPDATE packet to its peer to an-

nounce its new location. The peer which detects that the UPDATE packet is not UDP-encapsulated,

deduces that NAT-traversal measures have become unnecessary and continues the update proce-

dure with an unencapsulated UPDATE message.

Since UDP encapsulation is disabled, the two hosts must define regular transport-mode ESP

SAs during the update procedure. Afterwards, both HIP and ESP traffics are thus transmitted in

the regular way, without any NAT-traversal mechanism.

3.2.5.2 Host Moving Behind a NAT

If the mobile host stays on a private network protected by a NAT (either the same network or a

new one), NAT-traversal measures are still required. The mobile host triggers the update procedure

to announce its new location to its peers. Since NATs are still present, the mobile host must send

UDP-encapsulated HIP UPDATE packets, using the port numbers defined in the corresponding

HIP associations.

The UPDATE packets will activate the new bindings in the encountered NATs for the HIP

traffic. A peer, which receives a UDP-encapsulated UPDATE message, must continue the update

procedure with UDP-encapsulation. Since the new location of the mobile host may introduce new

bindings in NATs, the peer must use the source IP address and port number of the received UP-

DATE packet for further HIP exchanges. Moreover, the peer must ignore the possible LOCATOR

parameters included in the packet, because they will contain the private addresses of the mobile

host and not the proper address for the new UDP channel.

During the update procedure, the mobile host and its peer must define new BEET-mode ESP

SAs with UDP-encapsulation. In the same way as the establishment of a HIP communication, the

mobile host located behind the NAT can directly define the BEET-mode SAs, but its peer require

beforehand a UDP-encapsulated ESP packet to learn the IP address and UDP port number used

by the NAT. Therefore, the mobile host must send an ESP channel keep-alive immediately after

the end of the update procedure and the definition of the new SAs. The purpose of the keep-alive

packet is to generate a new binding in the NAT mapping table, in order to allow the peer to send

secured data to the mobile host, but also to indicate to the peer the IP address and port number it
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must use to send such data.

While the activation of a NAT binding only requires a basic UDP keep-alive packet (Fig-

ure 3.4), such a basic packet is not sufficient for the peer to complete its new BEET-mode SAs.

The peer must indeed be able to determine from the information contained in the packet, to which

HIP association this packet is related, and thus which data channel it reactivates. This purpose

is achieved by the specific keep-alive packet represented in Figure 3.5. This issue was the main

reason for choosing more complex keep-alive packets for ESP data channels.

Thus the mobile host must send immediately after the update procedure, a single-octet payload

in the new ESP data channel. The resulting packet is based on the new outbound BEET-mode SA of

the mobile host and encapsulated in UDP. The peer which receives the packet, determines to which

HIP association it is related with the SPI value contained in the ESP header of the packet. The SPI

value has indeed been defined by the peer itself during the update procedure, and is associated to

a specific HIP association. The peer completes then its new BEET-mode SAs with the source IP

address and port number of the packet.

3.2.5.3 Other Compatible Scenarios

The update procedures described in the previous sub-sections assumed that the mobile host was

the host originally located behind a NAT. These procedures are however also effective in other

scenarios.

The first scenario assumes that both HIP nodes are originally in the public Internet. Thus

their HIP association is a regular association based on transport-mode ESP SAs and wihtout UDP-

encapsulation. If one of the host changes its location and remains in the public Internet, the regular

update procedure is performed. However, if it moves from the public Internet to a private net-

work protected by a NAT, the NAT detection results indicate to this host to apply NAT-traversal

measures. In this case, the procedure described in the previous sub-section is performed. The

UDP-encapsulation is activated, and the peer which receives a UDP-encapsulated UPDATE mes-

sage concludes that it must also apply NAT-traversal measures. Then the new BEET-mode SAs

replace the former transport-mode SAs. The determination of the UDP port numbers to use for the

HIP and ESP channels is performed in the same way as the establishment of a new HIP association

between an initiator behind a NAT and a responder in the public Internet (procedure described in

the previous sections).

In that way, the present specifications allow a mobile host to move several times, successively

to the public Internet and to a private network protected by a NAT. Moreover, they allow each host
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of a HIP association to move from and to any type of network (private or public) under the single

condition that their peer is not located behind a NAT at the moment of their location change.

A second scenario where the previous procedures can also be applied, concerns the mobility of

the host located in the public Internet. It is indeed possible under specific circumstances, for this

host to successfully change its location while its peer is located behind a NAT. The main issue that

prevents this scenario from being systematically valid, is the possible presence of restricted cone or

symmetric NATs on the path between the HIP nodes. Such NATs would indeed discard the packets

coming from the new location of the host, since the new IP address would not be registered in the

NAT bindings.

In the case where only full cone NATs are present on the path and the host on the public

Internet changes its location but remains in the public Internet, the previous procedures can be

applied. The mobile host is still in the public Internet, but since the NAT-traversal measures were

required by its peer located behind NATs, the mobile host continues to apply these measures to

communicate with its peer. Thus the mobile host sends a UDP-encapsulated UPDATE message

to the peer, using the same destination IP address and port number defined in the HIP association.

This packet will be properly transmitted to the peer behind NATs, because full cone NATs forward

even packets arriving from unknown source IP addresses. Then the update procedure will be

completed successfully. The bindings in the NATs will not be modified because the peer behind

NATs has not changed its location or the UDP ports it uses. And eventually the HIP communication

will continue normally with the NAT-traversal measures activated.

3.2.6 Firewall Traversal

When the initiator or the responder of a HIP association is protected by a firewall, additional issues

arise, that may prevent the present NAT-traversal extension from working properly.

When the initiator is located behind a firewall, the NAT traversal mechanisms described in the

previous sections depend on the ability to initiate communication via UDP to destination ports

50500 and 54500 from arbitrary source ports, and to receive UDP response traffic from those ports

to the chosen source ports.

Most firewall implementations supportUDP connection tracking. This means that after a host

behind a firewall has initiated a UDP communication to the public Internet, the firewall relays UDP

response traffic in the return direction. If no such return traffic arrives for a specific period of time,

the firewall stops relaying the given IP address and port pair. The NAT-traversal measures defined
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in the present extension, already enable traversal of such firewalls, if the keep-alive intervals used

are less than the refresh interval of the firewall.

If the initiator is behind a firewall that does not support UDP connection tracking, the NAT-

traversal mechanisms can still be supported, if the firewall allows permanently inbound UDP traffic

from ports 50500 and 54500 and destined to arbitrary source IP addresses and UDP ports.

When the responder of the HIP association is located behind a firewall, the NAT-traversal

mechanisms previously described depend on the ability to receive UDP traffic on ports 50500 and

54500 from arbitrary source IP addresses and ports.

Consequently the NAT-traversal measures that have been specified in the present extension,

require that firewalls (with or without UDP connection tracking support) allow inbound UDP traffic

to ports 50500 and 54500 and allow outbound UDP traffic to arbitrary UDP ports.

3.3 Second Case : Responder Behind a NAT

The previous section has only described the NAT traversal mechanisms for HIP communications

with a responder located on a public network. The present section considers the case where the

responder may also be located on a private network protected by a NAT.

The main issue of this configuration is that an initiator will not be able to trigger a HIP commu-

nication with the responder, because the NAT protecting the responder will discard the incoming

messages from the initiator. The solution to solve this problem consists in adding a new middlebox

on the public Internet, which will act as intermediary between the HIP node located behind a NAT

and other HIP nodes. For this purpose, the new middlebox requires a permanent connection with

the host located behind a NAT, to be able to reach it at any moment. Then a HIP node which wants

to initiate a communication with the protected host, sends its request to the new middlebox which

will relay the request to the protected host, using its specific connection to it.

A similar middlebox has already been introduced in HIP specifications to facilitate the dis-

covery of HIP nodes, and in particular HIP nodes with high mobility. This middlebox is called

Rendezvous Serverand is defined in [18]. The concept of this middlebox is explained in Sec-

tion 3.3.1 and the enhanced version of this middlebox used for the NAT traversal extension is

described in Section 3.3.2.

3.3.1 Rendezvous Server Concept

The purpose of the Rendezvous Server (RVS) described in [18] is to improve reachability and

operations when HIP nodes are mobile or multi-homed. Basically, a HIP node willing to use this
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service, registers to the RVS and indicates which IP address it is currently using. The HIP node

keeps the RVS up-to-date about its current location. Furthermore, the DNS records related to the

HIP node point to the corresponding RVS. In that way, a host which wants to contact the mobile

HIP node will address its request to the RVS which will properly relay the message to the mobile

node.

The two following sub-sections describes more precisely the registration procedure, and the

role of the RVS in the establishment of new HIP associations.

3.3.1.1 Registration Procedure

The registration to the RVS follows the HIP registration procedure defined in [19]. This procedure

is based on the use of an existing HIP association between the registrating host and the RVS, or, if

no association exists beforehand, on the establishment of a new one.

If no HIP association exists, the host which wants to register to the RVS service, triggers a

common HIP base exchange but includes a registration request in the I2 packet. This request

corresponds to a new HIP parameter called REGREQ. This new parameter indicates to which

service the HIP node wants to register, in the present case to the RVS service. The RVS concludes

the HIP base exchange with a R2 packet which contains the registration response. The new HIP

parameter REGRESP indicates to the HIP node whether its registration has been validated or

denied.

If a HIP association has already been activated between the mobile host and the RVS, the regis-

tration request and response are transmitted in HIP UPDATE packets related to the corresponding

association.

The two cases of the registration procedure are described in Figure 3.7.

After a successful registration to the RVS, a mobile node modifies the DNS entries related to

itself. The node follows the procedures described in [16]. Basically, the node replaces the DNS

record pointing to its own current IP address by a record pointing to its RVS. In that way, a HIP

node willing to communicate with the registered host, will use the public IP address of the RVS

indicated by DNS servers, to contact its peer.

Moreover, when the registered host changes its location, it does not need to update the DNS

entries. It just has to keep the RVS up-to-date, using the commmon HIP update procedure with its

HIP association with the RVS. The RVS can thus contact the mobile node at its proper location at

any moment.
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Figure 3.7: HIP Registration procedure, included in the HIP Base Exchange or based on UPDATE

packets.
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3.3.1.2 Establishment of a New HIP Association Relayed by the RVS

When a HIP node wants to initiate a communication with a host registered to a RVS, it triggers

the HIP base exchange by sending an I1 packet to the IP address of the RVS. The RVS detects in

the I1 packet a destination HIT which does not correspond to one of its own HITs but to one of its

registered clients. The RVS then modifies the IP header to relay the I1 packet to the corresponding

host. The RVS also includes in the packet a FROM parameter which indicates the original source

IP address of the packet. This IP address is then used by the registered host to send packets directly

to the host which contacted it. In particular, the remaining packets of the base exchange, R1, I2

and R2, are directly transmitted between the initiator and the registered host.

Consequently the RVS defined in [18] is only used to establish contact between two HIP nodes.

The RVS relays only the I1 packet of a base exchange. All other HIP packets and data packets are

directly exchanged by the HIP nodes, without going through the RVS.

The HIP base exchange modified by the use of a RVS, is described in Figure 3.8.
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Figure 3.8: HIP Base Exchange, with responder registered to a RVS.
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3.3.2 Rendezvous Server for NAT Traversal

A similar concept to the Rendezvous Server described above, will be used to enable the reception

of HIP communications when a host is located behind a NAT. The enhanced RVS provides a

completerelay service. The RVS will indeed be used to relay all HIP control and data traffic. To

achieve this mission, the RVS needs to know permanently the location of each HIP node which

uses the RVS as relay. For this purpose, the RVS uses the HIP associations already established

with the registered hosts and must use a mechanism to record and keep the location of the other

HIP nodes up-to-date.

The registration procedure with the RVS and the mechanism to record HIP nodes locations are

described in Section 3.3.2.1. The relaying procedures for the RVS are described in Section 3.3.2.2.

3.3.2.1 Registration Procedure and Location Records

The registration to therelay serviceof the enhanced RVS is processed in the same way as the

registration to the common RVS. A host can use an already existing HIP association to the RVS

and send HIP UPDATE packets to register to the RVS. Or more likely, the host creates a new HIP

association by triggering a base exchange. To register to the specific service, the host includes

registration request parameters in the UPDATE or I2 packets. The registration validation or denial

is then sent by the RVS in an UPDATE or R2 packet, respectively.

In the case where the host is located behind a NAT and does not have any HIP association with

the RVS, it must trigger a base exchange with the NAT-traversal measures described in Section 3.2.

Since the RVS is located in the public Internet, the NAT traversal mechanism for a host located

behind a NAT and responder located in a public network can be applied. The NAT-traversal mech-

anisms are independent from the parameters present in HIP packets. Therefore, the registration

consists in that case in the establishment of a HIP association based on ESP BEET-mode SAs with

UDP-encpasulation. The registration parameters are included in the UDP-encapsulated I2 and R2

packets as they would be in non-encapuslated packets.

Moreover, in the case of a registered host behind a NAT, the UDP channels generated by the

HIP association will be the channels used by the RVS to relay packets coming from other HIP

nodes. Consequently both UDP channels, for HIP control and ESP data flows, must remain active.

Thus keep-alive mechanisms must be activated and the corresponding HIP association must not be

cancelled.

Since the enhanced RVS will relay all HIP control and data packets, it must also know the lo-
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cation of the HIP nodes in communication with the registered hosts. Thus, if one of the end-hosts

of a communication relayed by the RVS has not registered to the RVS service, the RVS has to

create a record containing the current location of this node. The RVS must then keep this record

up-to-date during the lifetime of the corresponding HIP communication.

Consequently if an unregistered host tries to initiate a communication with a registered host

through the RVS, the RVS first checks if it has already an existing record of the location of the

initiator, based on its HIT. If a record exists, the RVS updates it if necessary. If no record is found,

the RVS establishes a new record, identified by the HIT of the initiator. The RVS stores the source

IP address and the possible UDP source port number of the received I1 packet. It can also deduce

from the UDP encapsulation or non-encapsulation of the packet, whether or not the initiator is

located behind a NAT. After the creation or update of the initiator record, the RVS forwards the

I1 packet to the registered host. Moreover, if the initiator changes its location during the HIP

communication, the RVS must use the information contained in the UPDATE packets sent by the

initiator to correct the corresponding location record.

Then the RVS uses on the one hand the HIP associations established with the registered hosts,

and on the other hand the location records created for unregistered nodes, to relay properly the

packets of HIP communications between these nodes.

3.3.2.2 RVS Relaying Procedures

The role of the RVS is to relay both HIP control and ESP data traffic. The procedures to relay these

two kinds of traffic differ from each other.

To relay a HIP packet properly, the RVS just needs to look at the destination HIT included in

the HIP header of the packet. It then looks either for a HIP association or for a location record

corresponding to this destination HIT. Three cases are then possible, depending on the presence or

absence of NATs between the sender or recipient of the packet and the RVS.

If the incoming packet was not UDP-encapsulated and the final recipient does not require UDP-

encapsulation, the RVS must proceed as follows :

• the RVS determines the final recipient of the packet, based on the destination HIT contained

in the HIP header,

• the RVS recomputes the HIP header checksum, using the IP addresses stored in the HIP

association (for registered hosts) or in the location record (for unregistered hosts) related to

the recipient,
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• the RVS replaces the current IP header of the packet with a new IP header containing its own

IP address as source IP address. The destination IP address is defined as the IP address of

the recipient, indicated either in a HIP association or in a location record.

Note that this first case is not likely to happen, unless the registered host moves to a public net-

work and is contacted by an initiator also located in a public network. However, in a such context

the RVS would not be required.

If the incoming packet was not UDP-encapsulated but the final recipient requires UDP-encapsulation,

the RVS must proceed as follows :

• the RVS determines the final recipient of the packet, based on the destination HIT contained

in the HIP header,

• the RVS sets up the HIP header checksum to zero,

• the RVS inserts a UDP header between the former IP header and the HIP header. The

destination port is set up to the port used by the recipient and indicated in the corresponding

HIP association or location record. The source port is the port used by the RVS, thus the

default port 50500. The UDP checksum is computed with the IP addresses of the RVS and

the recipient,

• the RVS replaces the IP header of the packet with a new IP header containing its own IP

address as source IP address and the IP address of the recipient as destination IP address.

If the incoming packet was UDP-encapsulated, the RVS must keep the UDP-encapsulation,

even if it is not required by the final recipient of the packet. The RVS must consequently proceed

as follows :

• the RVS determines the final recipient of the packet, based on the destination HIT contained

in the HIP header,

• the RVS possibly checks that the HIP header checksum is null, and if it is not the case, sets

it to zero,

• the RVS modifies the existing UDP header. If the connection with the recipient requires

UDP-encapsulation, the RVS must use the UDP port numbers specified either in the HIP

association or in the location record related to the recipient. Otherwise the RVS must use

the default port number 50500 for both source and destination ports. It must then recompute

the UDP checksum based on its own IP address and the IP address of the recipient,
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• the RVS replaces the IP header of the packet with a new IP header containing its own IP

address as source IP address and the IP address of the recipient as destination IP address.

After the modifications of the HIP packet, the RVS can forward it to its final recipient. No

FROM parameter needs to be included in the HIP packets, as with the common RVS, because

every further packet will be relayed by the RVS.

The relaying procedure for ESP packets is slightly different. The ESP packets do not contain

the HITs of the HIP communication they are related to. The RVS must then determine the final

recipient of the packet, based possibly on the source IP address of the packet, but mainly on the

SPI contained in the ESP header. The RVS must consequently be able to establish a relation be-

tween a SPI value and a HIP communication it relays. The mechanism to establish this relation is

described in Section 3.3.4.

When the RVS knows to which relayed HIP communication the ESP packet is related, it must

determine the HIP association or location record corresponding to the recipient of the packet. The

RVS must then modify the packet accordingly before forwarding it. The procedure depends on the

UDP-encapsulation status of the incoming packet and on the connection with the recipient.

If the incoming ESP packet was not UDP-encapsulated and the final recipient does not require

UDP-encapsulation, the RVS just needs to modify the IP header of the packet. It must replace the

former IP addresses with its own IP address as source IP address and the IP address of the recipient

(indicated in the corresponding HIP association or location record) as destination IP address.

If the incoming ESP packet was not UDP-encapsulated and the connection with the final re-

cipient requires UDP-encapsulation, the RVS must proceed as follows :

• the RVS must insert a UDP header between the former IP header and the ESP header. It

must use the UDP port numbers indicated either in the SAs of its own HIP association with

the recipient, or in the information recorded about the recipient. The RVS calculates the

checksum with the IP addresses also indicated in the SAs or in the recipient record,

• the RVS replaces the IP header of the packet with a new IP header containing its own IP

address as source IP address and the IP address of the recipient as destination IP address.

However, the two first cases described above should not happen. In the first case, both end-

hosts of the communication do not require UDP-encapsulation, which means that they are both

located on a public network. Consequently they do not require the RVS relay service to estab-

lish their HIP communication. This first case may however happen if the responder registered to
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the RVS moves from a private network to the public Internet. In the second case, the recipient

of the packet requires UDP-encapsulation. Thus the HIP association between the two end-hosts

should have been defined with NAT-traversal mechanisms (see Section 3.3.4). And consequently

the packet received by the RVS should already be UDP-encapsulated.

Therefore, the third case correspond to the general scenario for the relay of ESP packets. The

incoming ESP packet is already UDP-encapsulated. In that case the RVS must keep the UDP-

encapsulation and proceed as follows :

• the RVS modifies the existing UDP header. If the connection between the RVS and the

recipient requires UDP-encapsulation, the RVS must use the UDP port numbers specified

in the SAs of the HIP association or stored in the record corresponding to the recipient.

Otherwise the RVS must use the default port number 54500 for both source and destination

ports. It must then recompute the UDP checksum based on its own IP address and the

recipient IP address,

• the RVS replaces the IP header of the packet with a new IP header containing its own IP

address as source IP address and the IP address of the recipient as destination IP address.

After the headers modifications, the RVS can forward the resulting ESP packet to its recipient.

3.3.3 RVS Databases

The previous section indicated that several types of information are required by the RVS to relay a

HIP communication properly. This information must be stored in two databases that the RVS must

keep up-to-date.

The first database is theClients Databasewhich contains all the HIP nodes communicating

through the RVS. The registered hosts are permanently recorded in this database. The unregistered

HIP nodes which communicate with registered hosts, are also listed in the database. Their records

are temporary and stored in the database only during the lifetime of their communications.

The records of the clients database contain the following information :

• the HIT of the HIP node, which is used to identify the record,

• the type of the node, either registered or temporary,

• whether or not the HIP node is located on a private network protected by a NAT, thus whether

or not NAT-traversal measures are required,
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• a pointer to the corresponding HIP association if the node is a registered host,

• otherwise, the IP addresses and UDP port numbers used by the unregistered node for HIP

and ESP traffics. The IP addresses are generally the same for both type of traffic but may

differ according to the NATs encountered on the path between the node and the RVS. Fur-

thermore, no specific UDP port may be defined if the node is not located behind a NAT. In

such case, the common port numbers for HIP and ESP traffic (50500 and 54500) are used

when necessary.

The records of the clients database are generated during the registration procedure, for the reg-

istered nodes, or during the establishment of a relayed HIP communication for unregistered hosts.

The second database is theHIP Communications Database. This database contains all the ongoing

communications between two hosts recorded in the clients database. For each HIP communication

relayed by the RVS, a record is created and contains :

• the two end-hosts of the communication, identified by their HITs,

• whether or not the communication is UDP-encapsulated,

• the SPI values of ESP flows for both directions,

• a binding between each SPI and the HIT of the corresponding recipient.

The records of this database are created during the establishment of a HIP communication

relayed by the RVS. Furthermore, when a HIP association is modified by the mobility of one of

the end-hosts, the communications database must be updated accordingly.

The following sections describes more precisely how the RVS database records must be created

and updated.

3.3.4 Establishment of a HIP Communication Relayed by the RVS

With help of the two databases described in the previous section, a RVS is able to relay a HIP

communication between two HIP nodes. The establishment of their communication is performed

as described in the following procedure.

First of all, a host located behind a NAT which wants to receive HIP communications, must

register to a RVS relay service. It must then bind its own HIT with the IP address of the RVS in

the DNS server records, so that a HIP node willing to communicate with it, sends the request to

the RVS.
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When a HIP node wants to communicate with a host located behind a NAT, it initiates the com-

munication by sending a I1 packet to the IP address provided by DNS servers, thus to the RVS. The

RVS which receives the packet must check that both end-hosts of the communication, identified

by the HITs, are recorded in its clients database. If the responder of the HIP communication is not

a registered host, then the RVS can not relay the I1 packet and it discards the packet. If the initiator

of the communication is not present in the clients database, the RVS must create a new record for

this host, based on its HIT. The RVS can already record the IP address and possible port number

used for HIP control traffic, and whether or not the node requires UDP encapsulation.

The RVS forwards then the I1 packet to the correct recipient as described in Section 3.3.2.2.

The RVS may transmit a UDP-encapsulated I1 packet, even if the packet was originally not encap-

sulated.

The responder of the base exchange receives the relayed I1 packet and processes it as defined

in HIP specifications. It the packet is UDP-encapsulated, the responder must use the NAT-traversal

mechanisms described in Section 3.2. It then responds with a R1 packet, sent back to the RVS.

The RVS relays the R1 packet to the initiator of the base exchange. In the case where the

responder is located behind a NAT and requires UDP-encapsulation, the initiator receives a UDP-

encapsulated R1, although it may have previously sent a non-encapsulated I1 packet. In such case,

the initiator must apply the NAT-traversal measures described in Section 3.2 for all further HIP

control and data packets.

The HIP base exchange continues with I2 and R2 packets, relayed by the RVS in the same way

as I1 and R1. When the RVS receives these new packets, it must use the SPI values included in the

HIP parameters to create a record in its communications database. The RVS can read these SPI

values because HIP packets are not encrypted. The SPI value indicated in the I2 packet is destined

to the ESP traffic from the responder to the initiator, and thus must be bound to the HIT of the

initiator in the database record. Similarly, the SPI value indicated in the R2 packet is destined to

the ESP traffic from the initiator to the responder and must be bound to the responder’s HIT. After

the transmission of the R2 packet, the communications database record is completed and validated.

After the end of the base exchange and the establishment of a HIP association between the

end-hosts, the initiator sends a first ESP packet. The RVS receives the packet and deduce from

the SPI contained in the ESP header to which HIP association it is related. If necessary, the RVS

use this packet to complete the clients database record corresponding to the initiator, with the IP

address and port number used for the ESP traffic. It forwards then the packet to the responder as

described in Section 3.3.2.2.

Then, the RVS relays further HIP and ESP packets as described in Section 3.3.2.2. If one of the
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end-hosts of the HIP association is located behind a NAT, the NAT-traversal measures have been

enabled during the base exchange, and the end-hosts must continue to follow the specifications of

Section 3.2. Otherwise the end-hosts follow the common HIP specifications for the continuation

of their communication.

3.3.5 Mobility Management

The previous sections have described how a HIP communication can be established with a host

located behind a NAT, and relayed by a RVS. Some modifications in the communication parameters

may however be required if one of the end-hosts changes its location, and in particular in the

configuration of the RVS. The RVS needs indeed to update its databases according to the new

location of the mobile host. Two cases must be differentiated depending on the moving host and

whether it is registered or not to the RVS relay service.

3.3.5.1 Mobility of an Unregistered Host

If an unregistered initiator of a HIP communication relayed by a RVS changes its location, it uses

the HIP update procedure to announce its new location to its peer. If the initiator moves from or

to a private network protected by a NAT, or if the responder is located behind a NAT, the initiator

must use the specifications described in Section 3.2.5. Otherwise the initiator uses the common

HIP specifications.

In both cases, the initiator sends an UPDATE packet to the responder’s RVS which will relay

the packet to the responder. When the RVS receives an UPDATE packet from the initiator, it

must correct the IP address and UDP port number for HIP traffic in the clients database entry

corresponding to the initiator. If the UPDATE packet contains a new SPI value, the RVS must also

correct the corresponding communications database entry accordingly.

If the UDPATE packet is not UDP-encapsulated and contains LOCATOR parameters, the RVS

must remove these parameters. This prevents the responder from using the initiator IP address

instead of the RVS IP address to send back some data. This measure is not necessary when the

packet is UDP-encapsulated, since the specifications described in the previous sections indicate to

the responder to not take the LOCATOR parameters of encapsulated packets into account.

After this possible modification of the UPDATE packet, the RVS relays it to the responder,

using the procedure defined in Section 3.3.2.2. The responder processes it according to usual

specifications and sends an UPDATE back to the RVS. The RVS uses the updated record of the

initiator to relay the packet properly. If this second UPDATE packet contains a new SPI value, the
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RVS must also correct the corresponding communications database entry.

The following UPDATE packets (there may be one or two of them) are then relayed as common

HIP packets by the RVS. The possible new SPI values they contain, are stored in the communica-

tions database.

Finally, the RVS uses the first ESP packet sent by the initiator to update the clients database

and register the correct IP address and UDP port used by the initiator for ESP traffic.

3.3.5.2 Mobility of a Registered Host

A HIP node registered to the RVS may also change its location while having HIP communications

with other nodes. This host is generally the responder of HIP communications, but it may also be

the initiator in the case where both hosts have registered to the same RVS.

If a registered host changes its location, it must first update its HIP association with the RVS,

so that the RVS is able to relay further packets to other HIP nodes properly. After the update

of the communication with the RVS, the mobile host can trigger the update procedures for HIP

communications relayed by the RVS.

The registered host updates its association with the RVS with the procedures defined in Sec-

tion 3.2.5, or in common HIP specifications if the host was and stays in a public network.

The registered host then updates the HIP communications relayed by the RVS. For this purpose,

it sends UPDATE packets to the RVS which will relay them to the correct peers. As described in the

previous sub-section, the RVS removes possible LOCATOR parameters contained in the packets,

if necessary. The RVS also updates its communications database with the possible new SPI values.

The clients database does not need specific update, because the parameters used to relay packets

to the mobile host have been corrected in the corresponding HIP association beforehand.

Thus in the case of a registered mobile host, the RVS only requires an updated HIP association

with this host. Then the RVS relays HIP and ESP packets as described in previous sections, and

possibly, updates its communications database if new SPI values are provided.

3.3.6 Keep-Alive Mechanisms

The RVS has to be located in the public Internet where it can be reached by any HIP node. Con-

sequently it is not direclty concerned by NAT binding keep-alive mechanisms. This is however

not the case for HIP nodes located behind NATs and communicating through the RVS. Therefore,

the RVS is likely to receive keep-alive packets from a HIP node, either registered or unregistered.

Since the purpose of such packets is to keep the bindings in the NATs present between the hosts
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and the RVS alive, the RVS does not need to relay them to the other end-host of a relayed commu-

nication. Consequently, the RVS can simply discard the incoming keep-alive packets.

3.3.7 Open Issues

The previous sections have described some mechanisms to allow HIP nodes to establish and re-

ceive HIP communications when they are located on a private network protected by a NAT. The

described specifications are sufficient to allow HIP communications in almost every scenario in-

cluding NATs between the end-hosts. However, some issues still remain in some particular cases.

The first issue concerns the efficiency of the RVS relay service. The second issue is related to the

use of IPsec ESP for the secured data transfer of HIP communications. Indeed, the use of SPI

values in the RVS may become problematic under particular circumstances.

These two main issues are described in the further sub-sections.

3.3.7.1 RVS Efficiency Issue

The NAT-traversal mechanisms described in the previous sections, indicate that a HIP communi-

cation triggered through a RVS (with a responder located behind a NAT), is afterwards completely

relayed by the RVS. The enhanced RVS relays both HIP and ESP traffic, and not only the first I1

packet of a HIP base exchange.

This difference with the basic RVS was introduced to solve the NAT traversal problems that

could appear if only the I1 packet was relayed by the RVS. Indeed a HIP base exchange between

two end-hosts both located behind a NAT, is likely to fail if the RVS relays only the I1 packet to

the responder. This scenario is described in Figure 3.9.

In the particular case where both initiator and responder of a HIP communication are located

behind a NAT, the following problem can appear. The initiator sends a I1 packet to trigger the base

exchange. The packet is sent to the IP address of the responder’s RVS, but it traverses beforehand

the NAT of the initiator. Thus the NAT creates a new binding with the IP address and UDP port

number used by the initiator, its own public IP address and a port number of its choice. If the NAT

is a restricted cone NAT (or more restrictive), it also records the IP address of the RVS. The NAT

forwards then the packet to the RVS with its own IP address.

The RVS then introduces a FROM parameter in the packet and relays it to the responder. The

FROM parameter contains the public IP address of the initiator’s NAT. Thus, the responder which

receives this packet will reply with a R1 packet that it sends to the IP address provided in the

FROM parameter. The R1 packet is processed by the responder’s NAT and then forwarded to the
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Figure 3.9: Basic RVS issue. Failure of the HIP Base Exchange when both end-hosts are located

behind a NAT.
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initiator’s NAT.

When the initiator’s NAT receives the R1 packet, the source address of this packet corresponds

to the public IP address of the responder’s NAT. If the NAT is a restricted cone NAT, it will discard

the incoming R1, because the source address recorded for the NAT binding was the IP address

of the RVS and not the public IP address of the responder’s NAT. Consequently the HIP base ex-

change fails and the HIP association is not established.

For this reason, the RVS relays the whole HIP communication and not only the I1 packet of the

base exchange. In that way the possible rejection of HIP packets by the initiator’s NAT are avoided.

Relaying the whole HIP communication is thus a NAT-traversal solution which works properly in

every configuration.

However, this mechanism may not be the most efficient one in several situations. The general

case of unefficiency consists in a HIP communication triggered by an initiator located in the public

Internet and the responder’s RVS which is not located on the direct path between the initiator and

the responder’s NAT. In a such configuration, after the RVS relayed the I1 packet, the responder

could directly send the R1 packet to the initiator. This packet would create the necessary binding

for the HIP traffic in the responder’s NAT. Thus the base exchange could be completed without

the relay of the RVS. The responder would then have to send a ESP packet directly after the base

exchange, to create the corresponding binding in its NAT. The following HIP communication could

then be handled in the same way as the case described in Section 3.2, without the help of the RVS.

Consequently if the RVS is not on the direct path between the initiator and the responder, relaying

the whole communication through the RVS introduces an unnecessary complexity.

The current specifications of the NAT traversal extension consitute consequently a valid solu-

tion for the case of a responder located behind a NAT. But the complete relay of HIP communi-

cations through the RVS is not the most efficient solution in many cases and should therefore be

improved in further development of the NAT traversal extension.

3.3.7.2 SPI Management Issue in RVS

As already mentioned, a second issue may also occur in the RVS, due to the use of IPsec ESP for

the secured data exchanges. The specifications of the enhanced RVS indicate that the RVS uses the

SPI values of the incoming ESP packets to determine to which HIP association they are related.

However, under particular circumstances, the RVS may not be able to identify this HIP association

with the single SPI value. An example of problematic situation is described below.
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Two different HIP nodes are located in a private network protected by a NAT and have reg-

istered to the same RVS. These hosts could also be located in two different private networks, but

they must use the same RVS. Two other HIP nodes are located in the public Internet and each one

establishes a HIP communication with one of the first hosts. Both communications are relayed by

the RVS. The configuration is represented in Figure 3.10.

Figure 3.10: SPI management issue in the RVS.

During the HIP base exchange, each host chooses the SPI value of its own inbound security

association. Nothing prevents the two hosts located in the public Internet to choose the same SPI

value. Consequently, the two ESP traffics relayed by the RVS and going from the private network

to the public Internet are related to two different HIP communications but use the same SPI. Thus

if one of the host located behind the NAT sends a ESP packet to its peer, the RVS will find two

correct HIP associations matching the SPI value contained in the packet. Since the ESP packet

does not contain any further information to identify the flow, the RVS will not be able to determine

the proper recipient of the packet.

The RVS could possibly use the IP addresses and UDP ports of the incoming ESP packet to

determine more precisely the HIP association it is related to. But this may not always solve the

problem because nothing prevents the two hosts of the previous scenario from being in fact the

same single host. And in a such case, the two ESP traffics emitted by the host behind the NAT
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would have the same SPI, IP addresses and UDP ports at the RVS.

Although the described scenario is very unlikely, some mechanisms should be defined in further

specifications to handle this problem. A possible solution would be to include new procedures

allowing the RVS to alert a HIP node that it is about to define a security association with a SPI

value already used by another active HIP communication. Thus the concerned HIP node would

have to choose another SPI value for the inbound SA it is establishing.
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Chapter 4

Implementation

As already mentioned, three main projects are currently ongoing to implement HIP specifications.

For the present thesis, we worked on one of these projects, namely the OpenHIP project. This

project is mainly developed by the Boeing Company. The main contribution in this project has

consisted in the implementation of the NAT traversal extension described in the present thesis.

4.1 OpenHIP Overview

The OpenHIP project is destined to MS Windows and Linux platforms. It is therefore divided

in several branches with a main part common to the various implementations. For this thesis,

we mainly focused on the OpenHIP implementation for Linux operating systems, which is itself

available in two different versions. The first version is akernel implementation (described in

Section 4.1.1) and the second, auser-spaceimplementation (described in Section 4.1.2). Both

versions are developed in C language.

4.1.1 Kernel Implementation

The main purpose of the kernel implementation is to dispose of an efficient implementation for

Linux operating systems. This implementation therefore tries to use as much as possible the fea-

tures of the Linux kernel.

In particular the secured data transfers of HIP communications are based on IPsec ESP and use

the IPsec stack of the Linux kernel. To manage the security associations (SAs) and policies (SPs),

the kernel implementation uses thelibipseclibrary and thesetkeyutility which are components of

theIPsec-Toolsproject.

In this implementation, a HIP-daemon running in user-space interacts directly with the network
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stack of the Linux kernel. This interaction requires however some modifications of the kernel itself.

The OpenHIP project provides therefore a specific patch for the Linux kernel.

This implementation is meant to be efficient but has a major disadvantage. With this version

of OpenHIP, applications continue to use real IP addresses to contact their peers. They do not use

the HITs or LSIs supposed to replace IP addresses in the transport and application layers. The

relation between host identities and IP addresses is indeed only present in the HIP daemon which

communicates directly with the kernel.

4.1.2 Userspace Implementation

The second version of OpenHIP for Linux operating systems consists in a user-space implemen-

tation. This means that the major part of network and cryptographic processing related to HIP is

accomplished in user-space. Indeed a HIP service running in user-space includes a HIP daemon

which manages the HIP associations, but also a complete IPsec stack separated from the kernel.

On the contrary to the kernel implementation, the applications establishing HIP communica-

tions with the user-space implementation of OpenHIP, must use directly the host identifiers, and

in particular the LSIs for IPv4-based applications. To achieve this goal, the implementation uses

a TUN/TAP device, which is a virtual network device, provided by the Linux kernel. Since the

LSI domain corresponds to the IP addresss domain 1.*.*.*/8, the TUN/TAP device is configured

to handle all data corresponding to this network domain, and the IP address of the virtual device is

set up to the LSI of the local host.

The main structure of the user-space implementation is described in Figure 4.1.

Applications establishing HIP communications with other HIP nodes, use LSIs to communi-

cate. The transmitted data corresponds therefore to the virtual domain 1.*.*.*/8 and is handled by

the TUN/TAP device in the kernel. The outgoing data is copied from the virtual device to user

memory and processed by the HIP service, before being sent back to the real network interface

in the kernel. The incoming data follows the inverse path through the kernel, the HIP service, the

virtual device, and is then sent back to the corresponding applications.

These multiple exchanges of data between kernel and user-space imply therefore a reduced

performance of the implementation. However, the user-space implementation of OpenHIP is much

more flexible and modular than the kernel implementation. Since the whole processing related to

HIP is done in the HIP service, new extensions or modifications of the implementation are not

limited by kernel requirements. Furthermore, this implementation is more adapted to the main

concept of HIP, because applications have to use the new host identifiers, while real IP addresses
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Figure 4.1: Structure of OpenHIP user-space implementation for Linux platforms.
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are only manipulated by the HIP service. For these reasons, the user-space implementation was

chosen to implement and test the NAT-traversal extension for HIP specified in the present thesis.

4.2 Integration of the NAT Traversal Extension in OpenHIP

The integration of the NAT-traversal support has required modifications in almost every part of the

HIP service processing. The main modifications implemented during the thesis are listed below.

First of all, the NAT traversal mechanisms have been implemented in the HIP daemon and

the IPsec stack of the HIP service. UDP encapsulation and decapsulation mechanisms have been

implemented for the HIP control traffic. A new UDP socket set up to the port number 50500 has

been added to send and receive UDP-encapsulated HIP packets.

The HIP daemon is responsible for the establishment of security associations in HIP com-

munications. The use of BEET-mode ESP SAs requires therefore some improvement in the SA

management. Since the HIP service has its own IPsec stack, the ESP processing has also been

improved to support and handle properly BEET-mode SAs. UDP encapsulation and decapsulation

mechanisms for ESP traffic were also required, and a new UDP socket was established on port

54500.

For simplicity and efficiency reasons, the enhanced implementation uses always the UDP port

numbers 50500 and 54500 to establish new UDP-encapsulated HIP associations. This avoids the

creation and management of multiple UDP sockets for HIP communications.

Moreover, some keep-alive mechanisms have been implemented to assure that the NAT bind-

ings corresponding to the new UDP channels do not time out during the lifetime of HIP commu-

nications.

With these first modifications, HIP communications can be established successfully with an

initiator located behind a NAT and a responder in a public network. Some improvements are

then required to determine the presence or absence of NATs and adapt the use of NAT-traversal

procedures accordingly.

A NAT detection mechanism has been integrated to the OpenHIP project, based on the STUN

protocol. To determine whether it is located behind a NAT or not, a HIP node needs therefore a

STUN client. The open-source projectSTUN Client and Server library, provides a STUN client

developed in C++ language. This client has been converted in C language and integrated in the

OpenHIP project.

A HIP node can consequently use the result provided by the STUN client and enable or disable

NAT-traversal mechanisms depending on the presence or absence of NATs.
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Finally, the mobility management, bound to the NAT detection system, has been improved in

the implementation, so that a host can move from or to a private network as much as it wants, while

its peers remain in a public network. The use of UDP-encapsulation and BEET-mode SAs is then

limited to the necessary cases.

All the previoulsy mentioned enhancements fulfil therefore the specifications described in Sec-

tion 3.2. To be able to establish HIP communications with a responder located behind a NAT, the

enhanced RVS described in Section 3.3 is required. The RVS functions have not been integrated

in the OpenHIP project yet. Thus the specifications of NAT-traversal mechanisms can be validated

with the current OpenHIP implementation, only in the case of an initiator located behind a NAT.

4.3 Evaluation

The NAT-traversal extension implemented in the OpenHIP project, requires some tests to confirm

that the HIP service works properly. Successful tests would also validate the specifications and

design choices made for the NAT-traversal extension.

The first test consists in verifying the proper use of BEET-mode SAs and UDP-encapsulation

of both HIP and ESP traffic, when the initiator of a HIP communication is located behind a NAT.

This corresponds to the basic requirements of the NAT-traversal extension. An implementation

can therefore be considered as valid only if a such test is successfully passed. This is the case

for the OpenHIP implementation with the NAT-traversal extension. A UDP-encapsulated HIP

communication can successfully be performed between an initiator behind a NAT and a responder

in a public network.

The second test consists in the validation of mobility scenarios. Since no RVS is currently

available to relay HIP communications to responders located behind a NAT, the mobility scenarios

can only be tested with a mobile host communicating with a responder located in a public network.

A specific test is described below and in Figure 4.2.

In this test, the network 10.17.1.*/24 represents a public network. A responder with IP address

10.1.2.53 is directly connected to this public network. The initiator of the HIP communication is

located initially in position 1, in the private network 192.168.0.*/24. This private network is con-

nected to the public network through the full-cone NATNAT-1, with public IP address 10.17.1.1.

A second private network, 192.168.10.*/24, is also connected to the public network through a

full-cone NAT, NAT-2, with public IP address 10.17.1.21. In addition, a STUN server is directly

connected to the public network and disposes of two IP addresses 10.17.1.3 and 10.17.1.4.
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Figure 4.2: Mobility test for the OpenHIP implementation with NAT-traversal extension. Initiator

moving to various locations in public or private networks.
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The initiator triggers the HIP communication with the responder from location 1, with private

IP address 192.168.0.2. After the successful establishment of the communication, the initiator

begins the transfer of a big file to the responder, through the HIP communication. The transfer

program used is the Secured Shell (SSH) transfer utilityscp. During the file transfer, the initiator

moves to one of the following locations :

• Location 2. The initiator changes its location inside the same private network and gets the

new IP address 192.168.0.3. From the responder point of view, only the UDP port number

used by the NAT will be modified. The HIP and ESP packets of the HIP communication

still have the same source IP address. Furthermore, the NAT-traversal mechanisms remain

activated.

• Location 3. The initiator moves to the second private network and uses the IP address

192.168.10.2. It is still located behind a NAT and consequently keeps using NAT-traversal

mechanisms. From the responder point of view, both IP address and UDP port used by the

initiator’s NAT will be modified.

• Location 4. The initiator moves to the public network and gets the public IP address

10.17.1.2. Consequently NAT-traversal mechanims are disabled, and HIP control and data

packets are not UDP-encapsulated anymore.

After each location change, the initiator performs a NAT detection test with the STUN server.

Based on the results of the test, the initiator then keeps or disables NAT-traversal mechanisms and

triggers the HIP update procedure. After the update of the HIP communication, the file transfer,

temporarily stopped during the mobility phase, is automatically resumed and continues properly.

In each case, the initiator’s mobility is properly handled. Furthermore, after the initiator suc-

cessfully moved to location 2, 3 or 4, it can come back to its previous location 1 or move to another

of the described locations, with the file transfer still running. If necessary, the initiator reactivates

NAT-traversal mechanisms. In all these cases, the initiator’s mobility is also successfully handled.

Even when several location changes are performed during the file transfer, the update proce-

dures are successfully processed and the file is finally successfully transfered to the responder.

The same tests have been performed with a file transfer triggered by the responder. In these

scenarios too, no problem was detected and the file transfer ended successfully.

Consequently the described test procedure, which gave positive results, validates the mobility sup-

port of the OpenHIP implementation with NAT-traversal extension.
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Further tests with multiple HIP nodes have also been performed. The first scenario consists in

two HIP nodes located in the same private network and establishing simultaneously a HIP commu-

nication with the same responder located in a public network. The second scenario consists in one

HIP node located in a private network and establishing communications with two hosts located in

a public network. These two hosts can also establish a HIP communication between each other. In

both scenarios, the mobility of the hosts initially located behind a NAT is tried out. Every test has

been successfully passed.

All the successful tests performed, prove therefore the good functioning of the NAT-traversal exten-

sion integrated in the OpenHIP project. Moreover, they testify to the validity of the specifications

described in the present thesis, and in particular in Sections 3.1 and 3.2.

Eventually, some additional tests could still be performed to evaluate the scalability of the Open-

HIP implementation in general, and more specifically from the NAT-traversal extension point of

view. Such tests would include a multitude of HIP nodes establishing HIP communications be-

tween each other, some of them located in a public network, while others would be located behind

one or several NATs. The different types of NATs described in Section 2.3.1, should also be rep-

resented in these tests.
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Chapter 5

Related and Future Work

The HIP protocol is still under development, and some further work is required. In Section 5.1, we

describe the open issues that have to be solved, and the future work directly related to the protocol

specifications. In Section 5.2, we present further requirements concerning the HIP implementation

projects, and in particular the OpenHIP project.

5.1 Protocol Development

The present thesis has provided specifications for enabling NAT-traversal support in HIP com-

munications. The main part of these specifications, described in Sections 3.1 and 3.2, have been

submitted to the IETF HIP Working Group and adopted as basis for ongoing standardisation of the

NAT-traversal mechanisms for HIP communications.

The NAT-traversal specifications for the case of a HIP communication between an initiator

located behind a NAT and a responder in the public Internet, have been submitted in the following

IETF Internet-Draft :

HIP Extensions for the Traversal of Network Address Translators

(draft-schmitt-hip-nat-traversal-00, work in progress)

V.Schmitt, A.Pathak, M.Komu, L.Eggert, M.Stiemerling. February 2006.

As mentioned, this document is the basis for standardised specifications. Consequently the

present specifications have to be developed, improved and described in further versions of the

document. Although the main concept of NAT-traversal mechanisms is durably defined in the

present thesis, some design choices may me modified in future versions of the specifications.

Among the discussed points, there is already the decision about using a single common UDP
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channel for both HIP control and data traffic, or two separated UDP channels (as described in the

current specifications).

From this choice about UDP channels, depend two further issues. First the choice of the

general UDP port numbers for UDP-encapsulated HIP control and data packets (thus either one

or two port numbers, and dedicated to HIP or shared with IKE/ESP protocols). The second issue

concerns the specification of keep-alive and reactivation mechanisms for the corresponding UDP

channels.

Another minor issue concerns the role of LOCATOR parameters used in HIP control packets.

These parameters carry indeed wrong or unnecessary information in scenarios assuming the pres-

ence of NATs between HIP nodes.

Beside these minor issues, a much more important point to develop in future specifications, is

the role of the Rendezvous Server described in Section 3.3. The specifications of the RVS pre-

sented in this thesis still need to be approved by the HIP Working Group and possibly integrated

to the corresponding IETF documents.

Moreover, as mentioned in Section 3.3, the proposed specifications of the RVS are not the most

efficient ones in several cases. Some improvements are therefore required. From a general point of

view, the NAT-traversal mechanisms should be enhanced in a way taking the number and type of

encountered NATs into account. In particular, full-cone NATs, which are less restrictive than other

types of NATs, should be handled separately. Besides, the RVS specifications should be adapted

to the type of detected NATs, and the relay of whole HIP communications should be enabled only

in necessary cases.

Eventually, the management of complex mobility scenarios should be precisely described in

the protocol specifications. An example of such advanced scenario is presented in Figure 5.1.

Figure 5.1: Example of a complex mobility scenario for HIP communications.
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In this scenario, two HIP nodes located in the same private network, connected to the public

Internet through a NAT, establish a HIP communication between each other. Since the two hosts

are directly connected, the NAT-traversal mechanisms should be disabled. One of this host is a

mobile host and modifies its location by moving to another private network protected by a NAT.

In a such case, the HIP specifications should indicate to the mobile host the following procedure :

determine the location of its peer’s RVS in the public Internet, activate the NAT-traversal mecha-

nisms and contact its peer through the RVS to update their HIP association. Afterwards the HIP

communication between the two hosts would traverse their respective NATs and would possibly

be relayed by the RVS, according to the types of NATs.

To handle such complex scenarios, specific mechanisms should therefore be developed to de-

termine precisely in which cases NAT-traversal mechanisms are required, when a RVS needs to

relay a whole communication, and how a mobile host can reach all its peers after it changed its

location.

5.2 Implementation

The previous section has described the future work concerning the specifications of the NAT-

traversal extension for HIP communications. Beside these theoretical considerations, the imple-

mentations of the HIP protocol also require improvements.

The implementation project considered in this thesis was the OpenHIP project. As mentioned

in Chapter 4, the enhanced RVS relaying complete HIP communications, has not been imple-

mented yet. This is therefore the first enhancement of the implementation that should be consid-

ered. The RVS is indeed a major improvement in HIP node connectivity.

The previous section also stated that modifications in the current specifications may happen

before the final standardisation of the protocol. The OpenHIP project will consequently have to

take such modifications into account and be enhanced to keep its conformance to the specifications.

In particular the possible modifications of the NAT traversal extension and the introduction of the

enhanced RVS in the IETF documents would have to be passed on the implementation.

Finally, as already mentioned, three main projects are under development to implement the HIP

protocol. These projects do not currently focus on the same aspects of the protocol. In particular

the NAT-traversal extension has not been implemented in the two other projects yet. However, in

the long term, the various implementations should provide the same main features, based on the

standardised specifications. Thus, eventually, the interoperability of the implementations should

be checked. And especially for the case of networks including NATs, the various implementations
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should perform compatible NAT-traversal mechanisms, based on the extension specified by the

HIP Working Group.
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Chapter 6

Conclusion

In the present thesis we have presented specifications for a NAT-traversal support in HIP commu-

nications.

In Chapter 2, we presented the main protocol specifications of Host Identity Protocol (HIP)

and IPsec Encapsulating Security Payload (ESP). We also described the functioning of Network

Address Translators and the issues they introduce in HIP communications.

In Chapter 3, we proposed an extension of the protocol enabling NAT-traversal support for

HIP communications. This extension was based on the UDP-encapsulation of HIP control and

data traffic and on the use of ESP BEET-mode Security Associations. We also introduced a new

device, the Rendezvous Server (RVS), to allow the reception of HIP communications in private

networks protected by a NAT.

In Chapter 4, we described the work accomplished to integrate the proposed extension into one

of the main HIP implementation project, namely OpenHIP.

And finally, in Chapter 5, we discussed some points that should be developed to improve the

protocol specifications and the corresponding implementations.

The main contribution of this thesis can therefore be divided in two parts. The major contribu-

tion consists in a theoretical approach of the HIP protocol. We proposed specifications for a HIP

extension providing NAT-traversal support. The main part of these specifications have been sub-

mitted as an Internet-Draft to the IETF in February 2006. This document has been adopted by the

IETF HIP Working Group as the starting point of the standardisation of a NAT-traversal extension

for HIP. The present thesis also proposed some further specifications for an enhanced Rendezvous

Server, improving HIP node reachability.

The second main contribution of this thesis consists in a more practical approach. Although
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the enhanced RVS has not been implemented yet, the main part of the NAT-traversal extension

has been successfully integrated to the OpenHIP project. The successful implementation of the

NAT-traversal extension is an important improvement in itself. But it also testifies to the feasibility

of the proposed solution and acts consequently as a validation of the specifications adopted by the

HIP Working Group.

To conclude, the HIP protocol is still under development and a lot of work needs to be accom-

plished before its specifications can be recognised as a standard. However, the protocol enhance-

ment proposed in the present thesis, constitutes a good basis for further developments. The NAT-

traversal extension will be indeed an important step to integrate HIP communications in nowadays

networks. This would be particularly true with the multitude of private networks connected to the

public Internet through NATs.
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Appendix A

NAT Examples

In this appendix, some examples are presented to describe the various behaviors of NATs according

to their type. In these examples, several UDP packets with various IP addresses and port numbers,

are transmitted and are then either properly forwarded or discarded by NATs. The different types

of NATs are treated in the following order :

• Full Cone NAT, in Figure A.1,

• Restricted Cone NAT, in Figure A.2,

• Port Restricted Cone NAT, in Figure A.3,

• Symmetric NAT, in Figure A.4.

In the following figures,Sdesignates the source IP address and UDP port number of the trans-

mitted packets. AndD designates the destination IP address and UDP port number of these packets.
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Figure A.1: Example of behavior of a full cone NAT.
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Figure A.2: Example of behavior of a restricted cone NAT.
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Figure A.3: Example of behavior of a port restricted cone NAT.
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Figure A.4: Example of behavior of a symmetric NAT.
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