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Summary
Data centers host diverse applications, mixing flows that require short

predictable latency with ones requiring high sustained throughput. In this
network environment, the existing TCP (i.e., SACK TCP) does not achieve
both goals. The existing TCP over a network with FIFO queues fills these
buffers by background flows and this results in critically high latency for
short flows. DCTCP is a proposed variant of TCP which solves the perfor-
mance impairments in the data center network. DCTCP leverages Explicit
Congestion Notification (ECN) in the network and identifies the depth of
congestion from the proportion of ECN feedbacks. It provides high burst
tolerance, low latency and high throughput for individual flows.

In a data center, some applications prevent from easily upgrading the
kernel of servers due to the limitation of the software and hardware support.
A new protocol should be incrementally deployable considering the deploy-
ment into such a network, however, DCTCP behaves poorly in a mixed
network environment with other TCP flows due to lacks of the compatibili-
ties against ECN.

This thesis proposes ODCTCP (One-sided DCTCP) which can be de-
ployed on one endpoint only as long as the other implements SACK TCP
with ECN. ODCTCP eliminates small but critical performance impairments
in the incremental deployment path by being compatible with the standard
ECN and rebalances total transmission performance in the data center net-
work.

DCTCP and ODCTCP were implemented done as the modular TCP
congestion control of the FreeBSD kernel and the performance was evaluated
with the implementation. The results show that the data transfer time
using ODCTCP is reasonably rebalanced for all the scenarios that have been
evaluated while keeping a fair share of bandwidth between non-ODCTCP
and DCTCP flows.
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Chapter 1

Introduction

This chapter describes the background of this research and gives a
brief overview of the problem of the existing proposal.
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1.1 Background

Data centers are emerging as essential computing platforms for IT enterprises. A large

service provider such as Google, Facebook or Amazon builds data centers for itself to operate

its services.

In a data center, up to a few thousand servers are interconnected via switches to form the

network infrastructure. A typical data center network topology is the two-level tree shown

in Figure 1.1. In the topology, a rack includes dozens of servers and a switch at the top.

The servers are connected to a rack switch via 1Gbps Ethernet link and the rack switch is

connected to an aggregation switch via 10Gbps Ethernet link. Internet bound traffic passes

throughput and aggregation switches, then, a core switch.

A data center is designed to build highly available, highly performant computing and

edge switch

aggregation switch

core switch

Internet

Figure 1.1: Example of data center design: Fat-tree topology
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storage infrastructure using low cost, commodity components. In particular, rack switches

are available at a low price, providing up to 48 ports at 1Gbps. On the other hand, how well

such commodity switches handle the traffic of real data center applications is important for

total network performance.

The concrete requirements for packet processing at rack switches depend on the services

running on servers. This thesis focuses on soft real-time applications such as online web

search, online retail and advertisement. These applications generate a diverse mix of short

and long flows and require three things from the data center network: short latency for short

flows, high burst tolerance and high-sustained throughput for long flows.

The first two requirements stem from the need to supply high quality of information to

users. Soft real-time applications are tightly scheduled until the data transmission to users

is complete. Although each data transmission corresponds to a short query and response,

a small latency for individual task directly affects the quality of results and the revenue of

the service provider. According to Amazon’s report, 100 milliseconds increase in network

latency results in a loss of 1% of the customers [20]. Reducing network latency for short

flows and high burst tolerance improve the ability to provide results of such services.

The third requirement stems from the need to refresh, analyze and update internal data

for soft real-time applications. A response to a user assembles multiple components, such as

the result of large data analysis and big data mining. These components affect the quality

of the result, therefore, high throughput for long flows is as essential as short latency for

short flows and high burst tolerance.

A traffic measurement in a data center [5] for soft real-time applications reveal perfor-

mance impairments when using the existing TCP, namely, SACK TCP. SACK TCP is an

enhanced TCP with SACK (Selective Acknowledgment) [18]. SACK helps the sender to

learn which received packets have been received safely. This mechanism provides perfor-
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mance improvement in the presence of multiple packet losses during one RTT (Round Trip

Time). However, SACK TCP flows experience high application latency in the data center.

If many flows converge on the same queue of a switch, SACK TCP induces burst traffic.

When short and long flows are mixed in the traffic, long flows consume the FIFO buffer in

the switches.

Using SACK TCP with ECN (Explicit Congestion Notification) [23] is one of the solutions

for reducing the FIFO buffer occupancy. ECN provides a means for end hosts to detect

incipient congestion before intermediates (i.e., routers and switches) in a network are forced

to discard packets. In addition, ECN has been already implemented in the TCP stack and

vendors implements ECN in L3 switches. Therefore, leveraging ECN in the network is low

cost. However, the existing ECN mechanism is leads to buffer underflows and low throughput

for long flows because it reacts too aggressively to the available bandwidth.

DCTCP (Data Center TCP) is a proposed TCP which modifies the existing ECN mech-

anism. It reacts to congestion in proportion to the extent of ECN marked packets. This

mechanism matches the input rate and the available bandwidth in the network and achieves

all three requirements for the data center network.

1.2 Problem statement

It is hard to deploy a new TCP variant such as DCTCP all at once in a data center network

in practice. The kernel on some servers cannot be upgraded even when all of the machines

are under centralized control. For example, storage appliances are constrained to not use the

latest kernel due to the requirements of a wide range of hardware and software. Suppose a

network environment that includes both storage and front-end application servers. On one

hand, storage servers use the existing TCP or TCP-like protocol because of their reliance of

the out-dated kernel. On the other hand, front-end servers such as web services and database
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applications use a new TCP variant because they can upgrade their kernels. In the result,

flows inside a storage network use a new TCP variant and an existing TCP serves traffic

in the storage network. Flows that exchange data between a storage server and a front-end

server use different TCP variant on each endpoint.

DCTCP is not designed to deploy on one endpoint only. Therefore, this thesis considers

the incremental DCTCP deployment in a network operated with multiple protocols and

addresses problems which occurs on one endpoint using DCTCP.

When considering the partial deployment of DCTCP, what protocol has been deployed is

important. It is hard to share the fair use of a bandwidth between DCTCP and SACK TCP

flows. When both DCTCP and SACK flows are running, DCTCP flows get much lower

throughput than SACK TCP flows. This limitation is due to ECN. DCTCP detects an

incipient congestion while SACK TCP does not detect it. Therefore, DCTCP behaves more

conservatively than SACK TCP does and a partial DCTCP deployment into the network

operated with SACK TCP results in less than expected performance gains.

Instead, we can use SACK TCP with ECN to deploy DCTCP partially. This thesis

abbreviates SACK TCP with TCP as standard ECN as below. Since both standard ECN

and DCTCP use ECN, DCTCP flows must be reasonably friendly with standard ECN flows.

However, DCTCP is not friendly to standard ECN.

The unfriendliness between one DCTCP and one standard ECN endpoint occurs under the

following two situations. When DCTCP is used on a sender only, the DCTCP sender declines

throughput to the minimum. This is because of a lack of the compatibility support to the

standard ECN receiver. When DCTCP is used on a receiver only, the standard ECN sender

transmits a smaller amount of data than expected. This is because the DCTCP receiver

ignores the existing TCP technique and the standard ECN sender misbehaves against the

DCTCP receiver. Thus, if we can solve the problems with DCTCP interacting poorly with
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standard ECN, we can improve the ease of deploying DCTCP and improve data center

network performance.

1.3 Contributions

This thesis proposes ODCTCP (One-sided DCTCP) which allows the partial or incremen-

tal deployment in a data center network where servers and switches already use standard

ECN. ODCTCP eliminates small but critical impairments for transmission performance by

applying two modifications in the DCTCP algorithm. One of them applies the DCTCP

sender algorithm and the other applies the DCTCP receiver algorithm. In the evaluations,

ODCTCP shows reasonable transmission performance in a network where some servers use

standard ECN. When the ODCTCP sender algorithm is used for short flows only, ODCTCP

short flows show up to 1.2 times as short data transfer time as standard ECN short flows in

the traffic mixed short and long flows. When the ODCTCP receiver algorithm is used for

short flows only, ODCTCP short flows show up to 1.2 times as short data transfer time as

standard ECN short flows in the traffic mixed short and long flows.

This thesis includes two additional contributions. One is an implementation of DCTCP in

the FreeBSD kernel as a modular congestion control algorithm in the kernel. The other is to

apply three modifications to the DCTCP algorithm. These modifications improve DCTCP

transmission performance.

1.4 Thesis outline

This chapter defines the problem statement and the contributions of this thesis. The next

chapter describes related work about standard ECN and DCTCP. Chapter 3 describes the

DCTCP algorithm in detail. Then, Chapter 4 describes the DCTCP implementation in

the FreeBSD kernel. This chapter also contains the DCTCP modifications that improve the
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transmission performance. Chapter 5 presents the ODCTCP algorithm. Chapter 6 describes

the experimental setup and scenarios for the evaluation. Then, Chapter 7 shows the result.

The conclusion and future work are described in Chapter 8.
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Chapter 2

Related work

This chapter introduces SACK TCP with ECN and related work
about advanced congestion control using ECN.
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2.1 Standard ECN

TCP provides best-effort data delivery that is not sensitive for delay or packet losses.

Although TCP has Fast Recovery and Fast Retransmit algorithm [19] to recover from packet

losses quickly, these mechanisms are not sufficient enough for applications which is sensitive

to latency or losses of individual packets.

ECN [23, 4] provides a means for an endpoint to detect incipient congestion over networks.

Endpoints using standard ECN (i.e., SACK TCP with ECN) can avoid the excessive queuing

latency and identify congestion without dropping packets.

ECN never works without an AQM (Active Queuing Management) [10] implemented switch

(or routers). One of the AQM schemes which can use ECN is RED (Random Early Detection)

[17]. RED provides a congestion indication to servers by dropping packets before a queue

of a switch builds up. When RED is used for ECN, the switch marks packets instead of

dropping packets.

A ECN implemented switch marks a packet based on the averaged queue length exceeding a

threshold. The switch configures two levels of thresholds, min th and max th in advance and

maintains the queue length using weighting parameter w. If the queue length is between

min th and max th, the switch marks packets randomly with the probability p. Beyond

maximum threshold, it marks all incoming packets.

The switch uses two bits in the IP header when it marks a packet. Figure 2.1 highlight

the two bits in the IP header. An ECN capable sender sets either of two bits. The set

bit is called ECT (ECN Capable Transport), which corresponds to 01 or 10. A switch sets

the other bit when the queue length exceeds a threshold. The bit corresponds to a CE

(Congestion Experience) bit. Unless a sender sets an ECT bit, the switch is not allowed to

set a CE bit.
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Figure 2.1: Reserved 4 bits for ECN in IP and TCP headers

ECN capable endpoints use two bits in the TCP header in addition to two bits in the IP

header. Figure 2.1 highlights the two bits in the TCP header. The two bits are used for

ECN setup and subsequent actions to be taken a CE bit in the network. In this section, the

explanation for ECN setup is skipped. See [23] if needed.

Figure 2.2 shows a series of ECN actions between a standard ECN sender and a standard

ECN receiver. Suppose that the standard ECN sender transmits four packets with the ECT

bit set and a switch set a CE bit in the second packet (1st-4th segments). When the receiver

10



ECE, ACK 10
001

         ACK 15
793

1

2
3

4
5

9

    CWR, seq 12987:14345           seq 14345:15793

           seq 8553:10001

           seq 7103 : 8553

ECN marked packet

    seq 10001:11449            seq 11449:12987

ECE, ACK 11
449

7

8

6CWND <- CWND/2

Figure 2.2: A series of ECN actions between a sender and a receiver using standard ECN

identifies a CE bit in an arriving packet, it sets the ECE (ECN-Echo) flag in the subsequent

ACK packets (5th-6th segments). Upon the reception of a packet with the ECE flag, the

sender halves CWND. Then, to confirm the receipt of the ECE flag to the receiver, it sets the

CWR (Congestion Window Reduction) flag for the outgoing packet (7th segment). When

the receiver identifies the CWR flag, it stops to set the ECE flag (9th segment).

2.2 Advanced TCP stack using ECN

New uses of ECN in the TCP stack are intensively researched for data center networks.

D2TCP [31] and D3 [32] highlight the prioritized flow handling considering to use a data

center network with multi-tenants. However, prioritizing individual flows is high cost for
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applications. To deploy these protocol, all applications operated in the data center explicitly

are prioritized and identifies the priority by itself when generating flows. Therefore, these

protocols are hard to deploy rather than DCTCP.

VCP [33], RCP [15] and Re-ECN [12] correspond to researches that study ECN feedback

methodologies for high-speed networks. However, these protocols require complex AQM

operations at switches. In addition, other TCP flows are impacted by the complex AQM

scheme. These negative points let us abandon their partial deployment.

The most similar research to this thesis is AccrECN [25]. It proposes an advanced ECN

feedback methodology to distinguish DCTCP and standard ECN. This proposal is useful

for a network mixed multiple protocols. However, because AccrECN needs to support its

own negotiation, this proposal does not allow to use in the network environment where the

out-dated kernel exists. Thus, the network where this thesis is target does not allow to use

AccrECN.
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Chapter 3

DCTCP algorithm

This chapter describes the desirable AQM scheme for DCTCP flows
at a switch and the DCTCP algorithm.
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3.1 Simple ECN marking mechanism at switches

DCTCP employs a very simple AQM scheme at switches. There is only one parameter to

be set, which corresponds to the ECN marking threshold, K. A switch sets a CE bit for

an arriving packet if the instantaneous queue occupancy is greater than K. Otherwise, it

simply forwards the packet. Note that this simple ECN marking mechanism works with the

RED configuration by setting parameters to w = 1.0, min th = max th = K and p = 0.0.

According to [5], the K value is recommended to set 20 packets for a 1Gbps link and 65 for

a 10Gbps link.

3.2 Congestion control at DCTCP senders

Unlike a standard ECN sender, a DCTCP sender controls CWND per RTT in the extent of

congestion. The following equation is used for the CWND calculation.

CWND ← CWND(1− α

2
) (3.1)

where α is a moving average over the fraction of ECE marked segments during the last

RTT. In this equation, α close to zero indicates light congestion and α close to one indicates

heavy congestion. When α is 1, the DCTCP sender behaves just like the standard ECN

sender. The α value is given by

α← (1− g)α + g ∗ F (3.2)

where F is the fraction of marked segments in the last RTT and g is a weight factor. The

F value is updated every RTT.

The g value is recommended to be set to 1/24. The DCTCP analysis [6] describes the

trade-off between small g and large g. The small g value gives the slow convergence between

14
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ECE

ECE

ECE

ECN marked
packet

Figure 3.1: ECN feedback with/without delayed ACK

competitive DCTCP flows. On one hand, the large g value impacts the low utilization of

bandwidth at switches. The selected g value is said to be reasonable when considering the

trade-off.

The difference between the standard ECN and DCTCP sender algorithm is CWND calcula-

tion per RTT. Otherwise, the DCTCP sender applies Fast Recovery, Timeout reaction, Fast

Retransmit from the standard ECN sender algorithm.

3.3 ECN feedback at DCTCP receivers

A DCTCP receiver uses a different ECN feedback methodology from a standard ECN

receiver. A standard ECN receiver sets the ECE flag for outgoing packets until it receives

the confirmation, which is a packet with an CWR flag, from the sender. On the other hand,

a DCTCP receiver responds the ECE flag only when it identifies an ECN marked packet

from a switch.

This algorithm is very simple, but it is problematic when the DCTCP receiver uses delayed

ACK [11]. Delayed ACK allows the server to ack every m packets 1. The consideration of

1The m value depends on operating systems. Note that the latest FreeBSD kernel (11.0) set two as m
value.
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delayed ACK is important because most of operating systems supports the delayed ACK to

reduce the overhead of the packet processing at the sender. Figure 3.1 shows three TCP

sequence diagrams for ECN feedback that a DCTCP receiver can use. The left one shows a

TCP diagram when DCTCP does not implement delayed ACK at the receiver. The DCTCP

receiver responds every packet and sets an ECE flag for the second and fourth ACK packets.

Using this ECN feedback gives high overhead at the sender due to the large number of ACK

packets.

The middle one shows a TCP diagram when the receiver enables delayed ACK. The receiver

responds every two packet and sets an ECE flag for the first and second ACK packets. This

reduces the overhead at the sender, but the sender incorrectly understands the number

of ECN marked packets. Although the correct number is two, the sender will estimate

the number at three. Therefore, the DCTCP receiver does not use this ECN feedback

methodology.

Instead, the DCTCP receiver enabling delayed ACK uses the right diagram. The DCTCP

receiver responds an ACK packet when the boarder of marked and not marked packets

corresponds to the ACK packet being delayed. Thereby, the receiver responds the third

packet in the right figure. This ECN feedback at the DCTCP receiver makes it possible to

exactly reconstructs that a CE bit were seen at the DCTCP sender.
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Chapter 4

DCTCP implementation in FreeBSD

This chapter introduces a necessary extension to the the modular
congestion control framework in the FreeBSD kernel to implement
DCTCP. Then, it investigates the design space for the detailed
DCTCP algorithm to improve the transmission performance and
the fairness.
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4.1 ECN processing in the FreeBSD congestion control

framework

A desirable DCTCP implementation is transparent to applications and system configu-

ration variables. To achieve this, a DCTCP implementation is added as a module in the

congestion control framework [9].

The FreeBSD kernel supports a modularized TCP congestion control framework [27]. The

framework aim to facilitate implementation of new congestion control algorithms. Imple-

menting a congestion control algorithm using the framework allows to configure the conges-

tion control algorithm as a kernel module.

The modular congestion control framework defines two fields in TCP control block 1:

cc var and cc algo structures. The cc var structure is used to store a set of specific vari-

ables to control a congestion for a TCP connection. The cc algo structure accommodates

basic housekeeping functions for congestion control.

The existing framework is insufficient support for non-standard ECN processing. The

latest FreeBSD kernel processes three things for standard ECN.

1. the kernel decides whether an ECE flag should be set in the next outgoing TCP segment

by snooping reserved ECN bits in IP and TCP headers.

2. The kernel controls a congestion if an ECE flag is set in an arriving TCP segment.

3. After the outgoing TCP segment is generated, the kernel decides whether an ECT bit

should be set in an ECN field of IP header in the outgoing packet.

However, the first and third processing are apart from the modular congestion control frame-

work. Thus, the kernel needs new functions for the two ECN processing.

1TCP control block is a data structure which maintains a TCP connection state [30].
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function usage

int ecnpkt handler(struct cc var *ccv,
uint8 t iptos, int cwr, int is delayack)

Execute an additional ECN processing using ECN
field in IP header and the CWR bit in TCP header.
As an option, input a flag which shows this packet
is in delayed ACK.

int ect handler(struct cc var *ccv)
Check whether this packet should set an ECT bit
in IP header.

Table 4.1: Additional two functions defined in the structure cc algo. Both allows different
ECN processing from the standard ECN without interfering in the standard ECN processing.

This thesis appends two additional functions to make up for the first and third ECN

processing. Table 4.1 shows functions and the usage. The ecnpkt handler() function is

called after the first ECN processing. Therefore, a kernel can track an ECN field and the

CWR flag of the received packet in different way from the standard ECN algorithm. This

function allows an additional input as arguments. In the current implementation, a flag

which tells that this packet is in the delayed ACK is defined as an argument. If the return

value is set to non-zero, the kernel disables delayed ACK for the packet. The other function is

ect handler(), which is called after the third ECN processing. According to [23], standard

ECN restricts to mark ECE flag in retransmitting packets. Using this function enables the

sender to change the condition to mark ECE. If the return value is set to non-zero, the kernel

sets an ECT bit for the packet.

The DCTCP implementation uses both appended functions as follows. The function

ecnpkt handler() is used to set the ECE flag only when the received packet sets a CE

bit. The function ect handler() is used to set an ECT bit to all outgoing packets to

estimate the accurate extent of the congestion.
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4.2 Implementation choices

Several design options remain when implementing the DCTCP algorithm. This section

discusses them.

4.2.1 ECN handling during congestion recovery mode

The FreeBSD kernel defines two congestion signals, which invoke congestion control at the

sender. One is an ACK packet which contains an out of sequence number. The other is

an ACK packet with the ECE flag set. The former is named fast recovery, and the latter

is named congestion recovery. Once the sender identifies either of two signals, it stops the

increase of CWND for roughly one RTT.

From this background, the ECN capable sender processes packets using the congestion

recovery mode when it identifies a ECE flag for an RTT. However, this is exactly a part of

the ECN processing defined in the standard ECN algorithm. When considering the DCTCP

implementation, the necessity of this mode is an open question.

The DCTCP implementation in the FreeBSD kernel chooses the invalidation of the conges-

tion recovery. This is because the DCTCP algorithm is motivated to the available bandwidth

utilization by reacting to the extent of congestion. DCTCP does not use ECN as a congestion

event but uses ECN as a metric to understand the extent of a congestion.

A simple test is conducted in order to figure out the influence of implementation choices.

The network environment is built by three servers. One of them is a software switch that

uses dummynet [24] to mark ECN. Dummynet is a traffic shaper to filter packets by matching

parameters in the IP and TCP headers. It creates a bottleneck link with a pipe configuration.

A pipe can configure a limited bandwidth, queue type, queue length and RTT. For this test,

there are two pipes. Each pipe has a bandwidth set to 2Mbps, RTT set to 40 milliseconds,
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the queue length set to 20 packets and the ECN threshold set to 6 packets. Unfortunately,

the existing dummynet has no ECN option for a pipe configuration. Therefore, the ECN

support for dummynet has been extended through this thesis. The pipe configuration is

common for the experiments described in this section.

The other two servers are used as a sender and a receiver. The sender generates a TCP

connection using modified DCTCP (or DCTCP) and transfers data for 10 seconds.

During the test, the sender keeps packet trace records by using tcpdump [3] and siftr

[2]. The data can be used to generate four plots in the visualization. Tcpdump data is a

source for TCP time-sequence, and throughput. Siftr data is used to see the process-

ing of internal TCP parameters such as CWND, ssthresh, SRTT (Smoothed RTT) and RTO

(Retransmission Time Out). The first two TCP parameters are important to understand

how the congestion control algorithm sets the amount of data to be sent. The SRTT value

visualizes TCP’s estimate of the network delay. The RTO value shows the longest delay when

a packet encounters a time-out.

Figure 4.1 and 4.2 correspond to the original DCTCP and modified DCTCP behavior

observed from 0 to 5 seconds. There are two differences between the two figures. The

first difference is seen after the first slow start around 0.5 seconds in the first plot. The

modified DCTCP encounters a packet loss although the original DCTCP does not. This

is the influence of no congestion recovery mode. The modified DCTCP sender continues

to increase CWND as shown in the second plot. In the result, as shown in the fourth plot,

modified DCTCP makes the queue full sooner than the original DCTCP does.

The other difference is the CWND behavior after 0.5 seconds in the second plot. The modified

DCTCP sender always advances the timing of CWND growth because it has no congestion

recovery mode. In the result, a modified DCTCP sender observes a smoother throughput

than DCTCP as seen in the fourth plot. As noted, modified DCTCP has a CWR flag after
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Figure 4.1: Fine-grained DCTCP behavior. The sender uses the congestion recovery mode
when an arriving packet sets the ECE flag.

CWND reduction although DCTCP does not use the CWR flag in the first plot. The reason

for this difference will be discussed in the next chapter.

4.2.2 α value initialization

α is an important parameter which indicates the extent of the congestion in the network.

A DCTCP sender estimates the next CWND using this parameter to utilize as high bandwidth

as the queue of switches allows. However, the initial α value does not correspond to the

extent of a congestion because the sender has no way to estimate the extent of congestion

in the network before it starts. In other words, the initial α impacts CWND behavior for the

duration until the value convergence.

There are two choices for the initial α value: α = 0 and α = 1. When α is set to zero at

first, the DCTCP sender transfers as much of data as possible until the α value converges.
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Figure 4.2: Fine-grained modified DCTCP behavior. The sender does not use the congestion
recovery mode.

On the other hand, the sender may expands the queueing delay at the switch. In the worst

case, it causes packet losses. When α is set to 1, the queuing delay is kept small. This

results in the quick α convergence in the best case. In the worst case, the amount of data

to be transferred during the α becomes much smaller than expected. Under the condition,

the sender takes long time to convergence α.

The DCTCP implementation in the FreeBSD kernel prepares selective initial α because the

appropriate initial α value depends on applications. When DCTCP is used for throughput-

sensitive applications, the α value set to zero is preferred. When latency-sensitive appli-

cations uses DCTCP, the α value set to one is good choice because it prevents from an

unnecessary queuing delay in any network environment.

Figure 4.2 and 4.3 show the fine-grained modified DCTCP behavior that set an initial α

value to zero and one, respectively. When compared between the two figures, the modified

23



  5.0 x 105

  1.0 x 106

S
eq

u
en

ce
 N

u
m

b
er ACK

seq #
CWR

 0

 20000

 40000

B
y

te
s

ssthresh
cwnd

40

80

120

160

 200

 300

 400

 500

 600

 700

 800

S
R

T
T

 [
m

s]

R
T

O
 [

m
s]

SRTT
RTO

25

50

75

100

Q
ue

ue
oc

cu
pa

nc
y 

[%
]

1

2

3

4

0.0 1.0 2.0 3.0 4.0 5.0

T
hr

ou
gh

pu
t

[M
bp

s]

Time [s]

Figure 4.3: Fine-grained modified DCTCP behavior. A DCTCP sender has no congestion
recovery mode and sets an initial α to one.

DCTCP using large initial α value has no packet loss around 0.5 seconds in the first figure.

A modified DCTCP sender using a large initial α value refrains large SRTT and the high

queuing occupancy in the third and fourth plots. These are exactly the trade-off between

large and small initial α values described above.

4.2.3 α value handling after idle time

Idle time is rarely observed in a TCP connection, but it occurs when a receive buffer is

full while the server transfers large data in the high speed network. Although the FreeBSD

kernel allows to tune a receive buffer automatically, it takes long time to set an appropriate

receive buffer in the high speed network.

For DCTCP senders, how to handle α under such conditions is an open question. There

are two choices for the DCTCP implementation: one is to reset α, and the other is to keep

24



  1.0 x 105

  2.0 x 105

  3.0 x 105

  4.0 x 105

  5.0 x 105

S
eq

u
en

ce
 N

u
m

be
r

ACK
seq #
CWR

 0

 20000

 40000

0.0 1.0 2.0 3.0 4.0 5.0

B
yt

es

Time (sec)

ssthresh
cwnd

Figure 4.4: Fine-grained modified DCTCP behavior after idle time. A DCTCP sender sets
initial α to zero. After idle time, the sender resets α.

α. The decision of the two choices depends on when the next congestion event is likely to

occur. When the next congestion is induced by the previous one, keeping the current α value

is reasonable. Otherwise, it is reasonable to reset α.

The DCTCP implementation in the FreeSBD kernel selects the reset of α because each

congestion event occurs independently in the network. By applying this choice, a DCTCP

sender begins the congestion control from the beginning after idle time.

Figure 4.4 shows a fine-grained modified DCTCP behavior after idle time. The experiments

setup is same but a modified DCTCP sender suspends for 1 second after every 200KB data

transmission. The sender configures initial α to zero for this test.

In Figure 4.4, there are two idle periods as seen in the first plot: one is from 1 to 2

seconds and the other is from 3 to 4 seconds. When the modified DCTCP sender starts data
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transmission again after idle time, it transmits from 4 segments 2 when seeing the second

plot. The sender increases CWND exponentially until CWND reaches sshthresh. Upon the

first reception of an ACK packet with the ECE flag, The sender never reduces CWND. This

behavior is safe because α set to zero means no CWND reduction.

2RFC5681 [8] defines CWND after idle time
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Chapter 5

One-sided DCTCP algorithm

This chapter proposes the ODCTCP algorithm which allows a server
to use the DCTCP algorithm on one endpoint in the network op-
erated with standard ECN.
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5.1 ODCTCP sender algorithm

5.1.1 Compatibility issue at DCTCP senders

When a sender uses DCTCP and the receiver uses standard ECN, throughput declines to

the minimum value supported by the kernel 1. Figure 5.1 reproduces the situation. (The

setup for the test is explained in section 4.2). When examining the TCP time-sequence

processing shown in the first plot, the number of TCP segments becomes two from 1.7

seconds. The main cause is the CWND processing shown in the second plot. CWND degrades to

two segments after 1.7 seconds. The sender sets an unnecessarily small CWND rather than an

appropriate larger value.

The result was unexpected but in retrospect easily explained. Figure 5.2 illustrates a series

1All congestion control algorithms implemented in the TCP stack sets at least 2 segments as CWND [8]
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Figure 5.1: Fine grained DCTCP sender behavior: The sender uses DCTCP and the receiver
uses standard ECN. CWND declines to the minimum supported value in the kernel and stays
there.
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Figure 5.2: A series of the ECN processing between a DCTCP sender and a standard ECN
receiver.

of ECN action between a DCTCP sender and a standard ECN receiver to explain the issue.

Suppose that a packet is set a CE bit (2nd segment). When the standard ECN receiver

recognizes a CE bit in an arriving packets, it feedbacks an ACK packet with an ECE flag

(3rd segment). Uopn the reception of an ACK packet with the ECE flag, The DCTCP

sender updates CWND, then, transmits two segments (4 - 5th segment).

The standard ECN receiver responds ACK packets with the ECE flag until the peer trans-

mit a packet with the CWR flag (See section 2.1). However, the DCTCP sender never sets

the CWR flag because the CWR flag is not used in the DCTCP algorithm. Because of

this difference between the standard ECN and DCTCP sender behavior, the DCTCP sender
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continues to receive ACK packets with the ECE flag till the end of this TCP connection (6th

segment). In the end, the DCTCP sender converges CWND to the minimum value supported

by the kernel.

5.1.2 Compatibility support at ODCTCP senders

An ODCTCP sender sets a CWR flag to avoid an unexpected degradation of CWND values.

Figure 5.3 shows a series of the ECN action between an ODCTCP sender and the standard

ECN receiver. Unlike a DCTCP sender, an ODCTCP sender sets the CWR flag in the

outgoing packet after the receipt of an ECE flag (4th segment). Therefore, the standard

ECN receiver stops to set ECE flag in subsequent ACK packets and the ODCTCP sender

returns the first process as expected.

Figure 5.4 shows a fine-grained ODCTCP sender behavior. The same test is conducted

with Figure 5.1 although the sender uses ODCTCP. As expected, the TCP time-sequence

diagram shows a straight line shown in the first plot. In addition, CWND is kept reasonable

value in the second plot.

Note that the ODCTCP sender algorithm compromises to count the number of ECE flags

accurately. In the DCTCP algorithm, a sender estimates the number of ECN marked packet

as accurately as possible. However, this policy cannot be applicable for an ODCTCP sender.

This is because a standard ECN receiver continues to set the ECE flag in ACK packets for a

RTT once it identifies a CE bit in an arriving packet. The standard ECN receiver responds

with the larger number of packets with ECE flag than the DCTCP receiver does. Thus, the

ODCTCP sender estimates a larger number of ECN marked packets than expected in the

end.
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Figure 5.3: A series of the ECN processing between an ODCTCP sender and a standard
ECN receiver.

5.2 ODCTCP receiver algorithm

5.2.1 Problematic ECN feedback at DCTCP receivers

A receiver algorithm rarely has a possibility to improve data transmission performance

because the sender algorithm controls the CWND. However, when the sender uses standard

ECN and the receiver uses DCTCP, the DCTCP receiver can trigger problematic behavior

on a standard ECN sender due to the different interpretation of the ECN bits and their

translation.

A transmission performance degradation occurs when a DCTCP receiver responds an
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Figure 5.4: Fine grained ODCTCP behavior. When the sender uses ODCTCP and the
receiver uses standard ECN, CWND stabilizes at a larger value, resulting in the stable TCP
segments transmission.

ACK packet that triggers to increase CWND at the sender. This problem happens only when

the receiver use delayed ACK. Figure 5.5 shows the TCP time-sequence diagram which

reproduces the problematic situation. Because the situation is hard to explain with one

figure, Figure 5.6 is used for the comparison. In Figure 5.6, both a sender and a receiver use

standard ECN. Both figures are generated using the experimental setup described in Section

4.2.

A DCTCP (or standard ECN) receiver get a CE and an ECT bit by turns in arriving

packets seven times on the way. Once the receiver detects a CE bit, it feedbacks an ACK

packet with the ECE flag. Therefore, the TCP time sequence in both figures shows that

the standard ECN sender sets the CWR flag. After then, the sender transmits 7 segments

during one RTT (One RTT corresponds to the duration that an ACK number reaches the
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Figure 5.5: Fine grained TCP time-sequence diagram when a sender uses standard ECN
and a receiver uses DCTCP. After the standard ECN sender transmits a packet with the
CWR flag, it transmits six segments. Then it transmits two segments at 3.41 seconds. In
the result, the total number of segments to be transmitted for roughly one RTT is eight.

corresponding TCP sequence number). The point is the number of segments to be transmit-

ted next. The standard ECN sender transmits 2 segments at 3.41 seconds in Figure 5.5, but

the sender transmits 4 segments at 3.49 seconds in Figure 5.5. A DCTCP receiver makes the

standard ECN sender transmit the smaller number of packets than a standard ECN receiver

does.

The main cause of this issue comes from the temporal disabling of delayed ACK at the

DCTCP receiver. Figure 5.7 illustrates a series of the ECN action between the standard

ECN sender and the DCTCP receiver. Once the standard ECN sender detects the ECE flag

in an ACK packet, it reduces CWND and enters the congestion recovery mode which stops

CWND increasing for a RTT from the next outgoing packet (3rd segment). The standard

ECN sender set CWR flag in the next outgoing packet (4th segment). The DCTCP receiver
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Figure 5.6: Fine grained TCP time-sequence diagram when a sender and a receiver use
standard ECN. After the standard ECN sender transmits a packet with the CWR flag, it
transmits six segments. Then it transmits four segments at 3.49 seconds. In the result, the
total number of segments to be transmitted for roughly one RTT is twelve.

identifies the turns of CE bits and report it to the sender via an ACK packet without an

ECE flag by disabling delayed ACK (6th segment). As this ACK packet includes the ACK

number which exceeds the sequence number of the packet with the CWR flag, the sender

exits congestion recovery mode (7th segment) and starts to increase CWND again.

The standard ECN sender adds one segment into CWND but this is not an expected behavior.

According to RFC 3465 [7], the delayed ACK algorithm allows to increase CWND by two

segments. Thus, the standard ECN sender should add two segments in theory. However,

because the DCTCP receiver temporally disables delayed ACK, the standard ECN sender

allows to increase CWND by one segment.
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Figure 5.7: A series of the ECN processing between a standard ECN sender and a DCTCP
receiver.

5.2.2 Modified ECN feedback at ODCTCP receivers

To avoid this situation, an ODCTCP receiver enables delayed ACK when an arriving

packet sets the CWR flag. Figure 5.8 shows a series of the ECN action between a standard

ECN sender and an ODCTCP receiver. Unlike a DCTCP receiver, an ODCTCP receiver

enables delayed ACK when the CWR flag is set in the packet (6th segment). In the result,

the standard ECN sender can increase CWND by two segments.

The ODCTCP receiver algorithm compromises the accurate estimation of ECN marked

packets when the sender uses DCTCP. As the ODCTCP receiver enables delayed ACK for

a packet with the CWR flag, the DCTCP receiver cannot report a turn of the CE bit to the

DCTCP sender correctly. However, this is a minor problem to be considered. Unless the
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Figure 5.8: A series of the ECN processing between a standard ECN sender and an ODCTCP
receiver.

CWND is quite small, the influence of incorrect ECN feedbacks is small, which can be ignored.
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Chapter 6

Evaluation setup

This chapter describes metrics, methodologies, network topologies
and kernel parameter choices in the evaluation.
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6.1 Scenarios

The evaluation includes two performance investigations. One investigates modified DCTCP

and original DCTCP. The other investigates the ODCTCP performance. They both are

evaluated via microbenchmarks and a benchmark described as below. Microbenchmarks

purposes to see the protocol transmission performance on the specific traffic patterns. A

benchmark, on the other hand, emulates data center network traffic using a measurement

insights for targeting service operation.

6.1.1 Microbenchmark

Microbenchmark contains three experimental scenarios.

(1) incast: Incast occurs when many flows converge in the same egress queue of a switch

for short time. The burst of incoming packets fills the queue of a switch. As a result, packets

are dropped the queue. This traffic pattern occurs regardless of packet size.

For this test, 10 flows 1 which transfer a specific amount of data are started at the same

time. The amount of data varies from 10KB to 800KB. Each flow transfers data just once.

(2) Queue buildup: Queue buildup occurs when several long flows and many short flows

share an egress queue of a switch. Because the long flows fills up the queue, short flows

experience either long queuing delay or packet losses when they arrive. This condition

affects the data transfer time of both long and short flows.

In order to generate this traffic pattern, many short flows are started while multiple long

flows are already running. An initial delay before starting short flows is configured. The

number of short flows is set to 10 and the number of long flows is set to either 2 or 8. The

initial delay is set to 500 milliseconds. Each flow transfers data just once.

1The packet processing for the large number of flows with a NIC generate unexpected delay in a NIC
because arriving packets are passed to a kernel sequentially. To avoid the possibility, the number of flows is
set to the relatively small number.
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(3) Fairness test: The final scenario is typical fairness test. This test is investigated to see

the fairness between ODCTCP and standard ECN flows and the fairness between ODCTCP

flows. The number of flows is set to 2, 4, 8, 16 and 32 and these flows are run for 20 seconds.

The number of servers split into the number of flows in each test.

6.1.2 Benchmark

How DCTCP or ODCTCP perform under the traffic patterns found in production data

centers is hard to conclude from the result of the microbenchmarks. This is because the mi-

crobenchmarks do not reproduce typical data center traffic but use simplified traffic patterns

For example, in the queue buildup test, how much impact short flows see from long flows

depend on the delay to start short flows.

To study these considerations, a benchmark test is conducted. Servers generate 560 short

flows and 40 long flows 2 and transfer data between endpoints chosen randomly. The traffic

generation rule is as follows. Flows are started to transfer a different amount of data from

1KB to 50MB. Once a server starts a flow, a server decides on an inter-arrival time according

to the distribution shown in Figure 6.1. This distribution is constructed from a measurement

result of a data center network which operate target applications. The data size distribution

of flows is random because this distribution was impossible to reproduce from figure 4 in

[5]. The concurrent number of flows is not considered because flows are generated according

to the flow inter-arrival time distribution. Five different benchmark tests are conducted for

this test. The duration of each test is around 30 seconds.

6.2 Metrics

The experimental scenarios described above are evaluated using the following set of metrics.

2Why this number is chosen because the performance evaluation tool, flowgrind, does not work well
when the number of flows to be generated in a command is more than 600.
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Figure 3: Time between arrival of new work for the Aggrega-
tor (queries) and between background flows between servers
(update and short message).

With such tight deadlines, network delays within the data center
play a significant role in application design. Many applications find
it difficult to meet these deadlines using state-of-the-art TCP, so
developers often resort to complex, ad-hoc solutions. For example,
our application carefully controls the amount of data each worker
sends and adds jitter. Facebook, reportedly, has gone to the extent
of developing their own UDP-based congestion control [29].

2.2 Workload Characterization
We next measure the attributes of workloads in three production

clusters related to web search and other services. The measure-
ments serve to illuminate the nature of data center traffic, and they
provide the basis for understanding why TCP behaves poorly and
for the creation of benchmarks for evaluating DCTCP.

We instrumented a total of over 6000 servers in over 150 racks.
The three clusters support soft real-time query traffic, integrated
with urgent short message traffic that coordinates the activities in
the cluster and continuous background traffic that ingests and or-
ganizes the massive data needed to sustain the quality of the query
responses. We use these terms for ease of explanation and for anal-
ysis, the developers do not separate flows in simple sets of classes.
The instrumentation passively collects socket level logs, selected
packet-level logs, and app-level logs describing latencies – a total
of about 150TB of compressed data over the course of a month.

Each rack in the clusters holds 44 servers. Each server con-
nects to a Top of Rack switch (ToR) via 1Gbps Ethernet. The ToRs
are shallow buffered, shared-memory switches; each with 4MB of
buffer shared among 48 1Gbps ports and two 10Gbps ports.

Query Traffic. Query traffic in the clusters follows the Parti-
tion/Aggregate pattern. The query traffic consists of very short,
latency-critical flows, with the following pattern. A high-level ag-
gregator (HLA) partitions queries to a large number of mid-level
aggregators (MLAs) that in turn partition each query over the 43
other servers in the same rack as the MLA. Servers act as both
MLAs and workers, so each server will be acting as an aggregator
for some queries at the same time it is acting as a worker for other
queries. Figure 3(a) shows the CDF of time between arrivals of
queries at mid-level aggregators. The size of the query flows is ex-
tremely regular, with queries from MLAs to workers being 1.6KB
and responses from workers to MLAs being 1.6 to 2KB.

Background Traffic. Concurrent with the query traffic is a com-
plex mix of background traffic, consisting of both large and small
flows. Figure 4 presents the PDF of background flow size, illustrat-
ing how most background flows are small, but most of the bytes in
background traffic are part of large flows. Key among background
flows are large, 1MB to 50MB, update flows that copy fresh data to
the workers and time-sensitive short message flows, 50KB to 1MB
in size, that update control state on the workers. Figure 3(b) shows
the time between arrival of new background flows. The inter-arrival
time between background flows reflects the superposition and di-
versity of the many different services supporting the application:
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Figure 4: PDF of flow size distribution for background traffic.
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Figure 5: Distribution of number of concurrent connections.

(1) the variance in interarrival time is very high, with a very heavy
tail; (2) embedded spikes occur, for example the 0ms inter-arrivals
that explain the CDF hugging the y-axis up to the 50th percentile;
and (3) relatively large numbers of outgoing flows occur periodi-
cally, resulting from workers periodically polling a number of peers
looking for updated files.

Flow Concurrency and Size. Figure 5 presents the CDF of
the number of flows a MLA or worker node participates in con-
currently (defined as the number of flows active during a 50ms
window). When all flows are considered, the median number of
concurrent flows is 36, which results from the breadth of the Parti-
tion/Aggregate traffic pattern in which each server talks to 43 other
servers. The 99.99th percentile is over 1,600, and there is one
server with a median of 1,200 connections.

When only large flows (> 1MB) are considered, the degree of
statistical multiplexing is very low — the median number of con-
current large flows is 1, and the 75th percentile is 2. Yet, these flows
are large enough that they last several RTTs, and can consume sig-
nificant buffer space by causing queue buildup.

In summary, throughput-sensitive large flows, delay sensitive short
flows and bursty query traffic, co-exist in a data center network. In
the next section, we will see how TCP fails to satisfy the perfor-
mance requirements of these flows.

2.3 Understanding Performance Impairments
We found that to explain the performance issues seen in the pro-

duction cluster, we needed to study the interaction between the long
and short flows in the cluster and the ways flows interact with the
switches that carried the traffic.

2.3.1 Switches
Like most commodity switches, the switches in these clusters are

shared memory switches that aim to exploit statistical multiplexing
gain through use of logically common packet buffers available to
all switch ports. Packets arriving on an interface are stored into a
high speed multi-ported memory shared by all the interfaces. Mem-
ory from the shared pool is dynamically allocated to a packet by a
MMU. The MMU attempts to give each interface as much memory
as it needs while preventing unfairness [1] by dynamically adjust-
ing the maximum amount of memory any one interface can take. If

Figure 6.1: Inter-arrival time of short flows and long flows between servers referred from
Figure 3 in [5].

(a) Average of data transfer time and SRTT: The data transfer time is equivalent to

goodput, which is the application-level throughput. Because a data center frequently deals

with time-sensitive flows, the data transfer time is appropriate to use in the evaluation. All

the test scenarios (except for fairness) use data transfer time as a metric.

The SRTT value corresponds to the smoothed average of TCP’s RTT estimate. Queuing delay

can be used as a metric but it is not used because capturing the queuing delay increases

overhead in a switch.

There is a problem with using the SRTT metric. Due to the TCP timer granularity in the

FreeBSD kernel, 1 millisecond is the minimum value that the kernel can express. Because of

this limitation, this metric is used only in the incast tests to roughly estimate the queuing

delay of a switch.

(b) Fairness index and instant throughput: The fairness itself is evaluated by Jain’s

fairness index [21]. The equation 6.1 shows the equation to compute a fairness index when

n flows are running. Xi is i-th flow’s normalized throughput. The range of fairness index is

from 0 to 1. If we observe 1 as fairness index, each flow is given fair bandwidth.
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Jain′s fairness index =
Σ(xi)

2

nΣx2
i

(6.1)

Throughput is important when studying fairness. Even when the fairness index is perfect, a

low utilization of the bottleneck link is problematic. Therefore, the average of throughput is

used as the metric to check the bandwidth utilization. This thesis defines good fairness when

the fairness index is reasonably large (> 0.9) and when the utilization of the link achieves

around 80% against the maximum bandwidth of a link 3. Throughput values are captured

every 50 milliseconds by flowgrind [34].

6.3 Performance measurement tool

The traffic generation for all the test scenarios is performed by flowgrind [34]. There are

two benefits to use flowgrind. First, flowgrind allows to assign control traffic and test

traffic separately. Flowgrind prepares a controller and daemons unlike other tools [22, 29].

The controller sends a command for traffic generation to daemons, and daemons starts to

run test traffic according to the command. This is useful for simultaneous measurement

between any hosts.

NUTTCP thrulay flowgrind
Average 6.25 % 1.05 % 0.30 %
Median 3.43 % 0.66 % 0.22 %
Top Outliers 23.71 % 6.05 % 1.21 %

23.20 % 4.84 % 1.11 %
22.76 % 4.42 % 1.10 %
22.18 % 3.72 % 1.01 %
21.04 % 3.69 % 0.99 %

Table 6.1: Effects of process scheduler on variation between flows (ubuntu 9.04, Linux kernel
2.6.28, CFS scheduler)

3A packet contains 40bytes for TCP and IP headers. Considering the header field, 77% of a packet fills
with data.
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The other benefit is process scheduling of daemons. Different performance can be ob-

served if the measurement tool forks either additional processes or threads. This problem

occurs regardless of the number of flows due to the influence of task scheduling of operating

systems. Flowgrind avoids this problem by adopting a single thread for all traffic. Table

6.1 displays the effect of flowgrind’s process scheduling, which is referred from [34]. The

authors consecutively measure the TCP goodput between the same two machines over stan-

dard Fast Ethernet with the three different tools NUTTCP [16], thrulay [26] and flowgrind.

For each reporting interval of 50 ms the absolute difference in goodput between the two

flows relative to the total goodput in that interval, as measured by the source, has been cal-

culated. The throughput difference between two flows using flowgrind is obviously small

in the comparison with other tools.

The following command is an example of flowgrind usage.

$ flowgrind -n 1 -E -H s=host1,d=host2 -Z s=10000 -Y s=0.1

The command will generate a TCP connection (-n option) from host1 to host2 (-H option).

Host1 gets three-way handshake down before generating a test traffic. Then, host1 starts to

transfer 10KB bulk data (-Z option) to host2 after 0.1 second initial delay (-Y option). Each

packet contains randomized integers in the data segment (-E option). The completion time

of data transmission is signaled from host2 by an ACK packet which includes the arrival

time of the last segment. The combination of these options performs all the experiment

scenarios.

6.4 Experimental network environment

DCTCP and ODCTCP are evaluated in the real network testbed and in the emulated

network environment with dummynet. The testbed is used to run a set of microbenchmarks.
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There is a single-bottleneck on a path. The emulated network environment is used to eval-

uate realistic workloads. It reproduces traffic for the inter-rack and intra-rack. To achieve

this network traffic, three switches are required, however, the testbed has a switch which

supports ECN. As the emulated network environment does not restrict the absolute number

of switches, the realistic workloads is evaluated in the emulated network environment. The

CPU and memory of servers were never a bottleneck in both experiments.

6.4.1 Real network testbed with a Nexus 3548 switch

Figure 6.2 illustrates the experimental testbed network for microbenchmarks. The network

environment is composed of four servers and one Cisco switch. Three servers are senders

(S1 - S3) and one emulates receivers (R1 - R2). S1 transfers data to R1. S2 and S3 transfer

data to R2. R1 and R2 are hosted in a server. Two receivers uses two different IP addresses

configured on one interface. Each server is equipped with 4-core Intel Xeon processors 3.0

GHz CPU, 16 GB RAM and two Intel 1 Gigabit Ethernet controllers. The FreeBSD kernel

version is 11.0.

The Cisco Nexus 3548 has three deep-buffers, which allows sharing a large buffer pool

among neighboring 16 switch ports. The amount of a buffer is 6MB. The Cisco Nexus 3548

always enqueues a packet to an ingress queue which is prepared every switch port. The

packet stored in the ingress queue is passed to one of shared buffers which resides the switch

port connected to the destination. The ECN processing is applied at this moment. When

the instantaneous queue length of a buffer pool has already exceeded the ECN threshold,

the switch sets a CE bit of the packet. In all the microbenchmarks, the ECN threshold is

set to 20 packets. Why this value is chosen as the ECN threshold is because the DCTCP

paper concludes this value is small enough to prevent from the burst of packets at a switch

[5].
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R1& R2

Figure 6.2: A single-bottleneck network topology with Nexus3548

6.4.2 A multi-hop network with dummynet

The emulated network for the benchmark consists of five servers shown in Figure 6.3. One

of them is used as a dummynet machine. The flows grouped in S1 and S2 are served by one

server. This server transmits packets over two different interfaces for S1 and S2. Another

server serves the S2 group. The last server serves the R1 and S3 groups over two different

interfaces. All servers have Intel 1 Gigabit Ethernet controllers, but CPUs and RAM size are

differed. The dummynet machine has 6 Intel Core i7-3930K 3.2GHz CPUs and 4GB RAM.

A server belonging to S1 and S2 groups is equipped with 8 Intel Core i7-2600 3.4GHz CPUs

and 8GB RAM. A server of S3 group is equipped with 8 Intel Core i7-2600 2.67GHz CPUs

and 20GB RAM. A server in R1 and R2 groups is equipped with 8 AMD FX processors and

4GB RAM.

The senders in the S1 and S3 groups all transfer data to a single receiver whose destination

is R1. The senders in S3 each transfer data to an assigned receiver R2. The network traffic is
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R1

Figure 6.3: A multi-bottleneck network topology with dummynet

shaped by dummynet over six pipes, which emulate three switches. Three pipes shapes traffic

from senders and three shapes traffic from receivers. Pipe 1 and 3 set the bandwidth to

100Mbps, RTT to 10 milliseconds, the queue length to 100 packets and the ECN threshold

30 packets. Pipe 2 sets bandwidth to 1Gbps, RTT to 1 milliseconds, the queue length to

100 packets and the ECN threshold 30 packets. The configured queue length is larger than

BDP 4 because this thesis assumes the use of a Cisco Nexus 3548. The ECN threshold is

chosen through the experience of many experiments. The bandwidth between Pipe 1 and

2 and the bandwidth between Pipe 2 and 3 are oversubscribed to reproduce network traffic

in the inter-rack and intra-rack. As used in the actual data centers, the bandwidth which

aggregates inter-rack network traffic is 10 times greater than the bandwidth for the inter-rack

network traffic.

The network topology contains two bottlenecks: both the link between Pipe 1 and 2 and

the link connecting Pipe 3 to R1. Flows from group S2 passes the second bottleneck and

4According to the BDP equation, the proper queue length is equivalent to 86 packets.
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flows from group S3 passes the first bottleneck. Flows from the senders in group S1 encounter

both these bottlenecks.

6.5 Kernel TCP Parameters

Setting kernel parameters for TCP is important for a performance evaluation of congestion

control algorithms. Several parameters are set as below.

net.inet.tcp.initcwnd10: This parameter allows the initial window size to increase to 10

segments [13]. However, a large initial window tends to lose the last segment and triggers

a timeout for low speed network [14]. Therefore, the emulated network conducts tests by

disabling this parameter.

net.inet.tcp.tso: This parameter permits a server to use TSO (TCP Segmentation Offload),

which reduces the CPU overhead for processing a large number of small packets on a high

speed network. This parameter is disabled in the emulated network because TSO does not

influence the result of test scenarios in a low speed network.

TCP host cache: The TCP host cache saves the TCP parameters observed for the last

TCP connection instance. An entry in the cache includes the RTT estimate to the remote

server, CWND, ssthreshold, MTU and bandwidth-delay product (BDP) [28]. Reusing the

values can improve the performance of TCP connections between the same hosts. Both

network environments disable the host cache and isolate individual TCP connection in a

test to see the pure transmission performance.

Nagle algorithm: The Nagle algorithm is intended to reduce the number of small packets

over the network. Applying this algorithm has a great benefit to the network and operating

system. Suppose an application which generate small packets such as 1 byte at a time.

Transmitting such small packets causes the network and an operating system to be over-

loaded. However, for applications in a data center network, this algorithm works harmful
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because most flows transfer only a small amount of data. Flows without Nagle algorithm

tend to get unnecessary latency before transmitting a last packet. Therefore, the Nagle

algorithm is disabled to avoid such a situation in both network environments.
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Chapter 7

Evaluation

This chapter evaluates DCTCP and ODCTCP performance using
both microbenchmarks and benchmarks. The first section investi-
gates DCTCP performance in the FreeBSD kernel. The next section
evaluates the modifications applied the DCTCP implementation.
The last section evaluates ODCTCP performance.
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7.1 DCTCP performance validation

As switches tell incipient congestion by using ECN, DCTCP flows provide the short queue-

ing delay if many DCTCP flows transfer data into a queue. In addition, as a queue length

is kept short by using ECN, each DCTCP flow achieves the almost same data transfer time.

On the other hand, SACK TCP flows have no way to identify incipient congestion. They

increase the amount of transmitting data until they encounter a packet loss. In the result,

if many SACK TCP flows transfer data into a queue, they induce the high queueing delay

by transmitting the large number of packets at once.

Incast: Figure 7.1 shows the result of the incast test. When many flows converge in the same

queue of a switch for a short period, the packets exhaust the queue and the switch generates

the long queueing delay. The tendency is high when the amount of data that senders transfer

is large as shown in the top plot of Figure 7.1. DCTCP flows refrain the increasing ratio

of the data transfer time against the amount of data rather than SACK TCP flows. When
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Figure 7.1: The result of the incast test. Because DCTCP flows maintain the short queueing
latency, they achieve 1.1 times faster 800KB transmission than SACK TCP flows.
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senders transfer 800KB, DCTCP flows achieve 1.1 times faster data transmission than SACK

TCP flows.

The difference of the data transfer time between SACK TCP and DCTCP flows corre-

sponds to the queueing delay. Because the switch limits the number of arriving packets in

the queue by marking ECN to packets, DCTCP flows keep the short queueing delay. It

result in the short data transfer time rather than SACK TCP flows.

The influence of the queueing delay is seen in the bottom plot of Figure 7.1. DCTCP flows

sustain the small SRTT even when the amount of data is differed. DCTCP flows increase the

SRTT to 1 millisecond when the amount of data to be transferred increases from 10KB to

800KB. On the other hand, SACK TCP flows grow the SRTT increasing to 3.1 times from

10KB to 800KB transmission.

The standard deviation of the SRTT should be highlight to see the queueing delay. When

the short queue length is maintained, it should be small because any flows do not receive an

impact from the queueing delay. This is true in the result. In transmitting 800KB, because

DCTCP flows keep short queueing delay, they show 2.5 times as small standard deviation

as SACK TCP flows.

Queue buildup: Figure 7.2 shows the result of the queue buildup test when two long flows

are running. When long flows have exhausted a queue, SACK TCP short flows significantly

delay to transfer the small amount of data due to the long queueing delay. On the other hand,

DCTCP short flows do not delay unlike SACK TCP flows because using ECN prevents from

the high queue occupancy. In transmitting 10KB, DCTCP short flows save 33 milliseconds

for the data transfer time compared to SACK TCP flows as shown in the top plot of Figure

7.2. This corresponds to 33 times of small data transfer time for DCTCP flows. The

increasing ratio of data transfer time is small for DCTCP flows when the amount of data

to be transferred is large. When DCTCP flows transfer 800KB, they save 170.2 millisecond
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Figure 7.2: The result of the queue buildup test when two long flows are running. SACK
TCP short flows receive an impact to the data transfer time by the presence of long flows
but DCTCP flows keep the short data transfer time.

compared to SACK TCP flows, which corresponds to 3 times short data transfer time.

When compared to the data transfer time observed in the incast test, we can see the impact

of the presence of long flows. As SACK TCP long flows exhaust a queue, SACK TCP short

flows require additional 33.1 milliseconds for data transfer time in transmitting 10KB when

long flows exist. This corresponds to 67 times the increasing of the data transfer time. When

SACK TCP flows transfer 800KB, the data transfer time in the queue buildup test is 4.2

times as long as one in the incast test. On the other hand, DCTCP flows get a small impact

from the presence of long flows. Because DCTCP prevents from burst traffic by using ECN,

it mitigates the impact of the presence of long flows. DCTCP short flows slow the data

transfer time to 3.1 times in transmitting 10KB and to 1.5 times in transmitting 800KB.

When seeing the data transfer time of long flows as shown in the bottom plot of Figure

7.2, both SACK TCP and DCTCP flows observe similar data transfer within less than

40 milliseconds difference in any amount of data transmission, which corresponds to a 4%
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Figure 7.3: The result of the queue buildup test when eight long flows are running. SACK
TCP flows increase the data transfer time to double in proportion to the number of long
flows. On the other hand, DCTCP flows show less than 1.5 times of an increase of data
transfer time even when the number of long flows is increased.

difference. The difference is not statistically significant.

Figure 7.3 shows the result of the queue buildup test when the number of long flows is

increased to eight. In this test, we can see the impact of data transfer time of short flows

when the number of long flows increases. When compared to the top plot in Figure 7.2,

SACK TCP short flows take twice the data transfer time for 10KB and 800KB transmission.

When seeing the standard deviation of the data transfer time of SACK TCP short flows,

SACK TCP short flows observe more than 20 times large standard deviation in transmitting

800KB. This is the impact of the queueing delay induced by the large number of long flows.

Because the large number of SACK TCP long flows exhaust a queue, SACK TCP short

flows get an impact to the data transfer time compared to the result of the previous queue

buildup test.

On the other hand, DCTCP flows avoid the expansion of the data transfer time. DCTCP
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Figure 7.4: Benchmark result for DCTCP performance validation. DCTCP flows achieve
short data transfer time in comparison with SACK TCP flows. When compared to standard
ECN flows, DCTCP flows show short data transfer time especially for long flows.

flows show the same data transfer time for 10KB transmission and show 1.4 times long

data transfer time for 800KB transmission when compared to the top plot in Figure 7.2.

Even when the number of DCTCP long flows is increased, DCTCP long flows do not delay

DCTCP short flows. Since any DCTCP flows receive the short queueing delay thanks to

ECN, DCTCP flows achieve the short data transfer time.

Benchmark: Figure 7.4 shows the data transfer time of SACK TCP, standard ECN and

DCTCP flows observed in the benchmark test 1. In this figure, to simplify the result, the data

transfer time is averaged regardless of the number of bottlenecks that flows pass. Thereby,

the error bar shows 95% of the confidential interval instead of the standard deviation. The

small confidential interval means that the average of the data transfer time converges. Note

that the fine-grained range of data size is used for x-axis and the log scale of the data transfer

time is used for y-axis.

1DCTCP senders set α to zero in the benchmark test.
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DCTCP flows show the shortest data transfer time in mixed network traffic of short and

long flows as shown in Figure 7.4. In comparison to SACK TCP flows, DCTCP flows show

the improvement of the data transfer time in any amount of data transmission. In particular,

DCTCP flows improves the data transfer time to 2.4 times for 1 - 10KB transmission, to 1.7

times for 10 - 100KB transmission, to 1.9 times 100KB - 1MB transmission and to 1.5 times

for 1MB - 10MB transmission. This is because the switch maintains the low queue occupancy

with ECN. Although SACK TCP flows show 5% of shorter data transfer time than DCTCP

flows for more than 10MB transmission, the actual difference of the data transfer time is

less than 2 milliseconds. This is a very small impact considering the data transfer time in

transmitting more than 10MB (= around 45 seconds).

In the result of the benchmark test, we also verify the advantage of DCTCP flows by

comparing to standard ECN flows. When seeing Figure 7.4, DCTCP flows improves the

data transfer time to 1.1 times for 1 - 10KB transmission, to 1.4 times 100KB - 1MB

transmission, to 1.3 times for 1MB - 10MB transmission and to 1.1 times for more than

10MB transmission. Standard ECN flows react to the available bandwidth too aggressively

in the receipt of ECN while DCTCP flows try to utilize the available bandwidth as much as

possible. The mechanism difference makes standard ECN flows slow compared to DCTCP

flows. It results in the longer data transfer time compared to DCTCP flows.

7.2 Modified DCTCP performance validation

This section investigates transmission performance of DCTCP flows using modifications

done in this thesis with microbenchmark tests. Each figure shows a microbenchmark result

and each result evaluates two things: the first and second modifications described in Section

4.2. To evaluate the two things, each result prepares four labels in the legend. The first

label is named “Linux DCTCP” which has no modification. Note that “Linux DCTCP” is
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Figure 7.5: The result of the incast test. FreeBSD DCTCP flows using the first modification
show shorter data transfer time than Linux DCTCP flows. When FreeBSD DCTCP flows
set a large initial α, they get similar performance with standard ECN flows.

not equivalent to the Linux patch [1] but the FreeBSD implementation which applies the

same internal parameters and procedures used in the Linux patch to the FreeBSD kernel.

The second label named “FreeBSD DCTCP (a = 0)” and the third label named “FreeBSD

DCTCP (a = 1)” are equivalent to modified DCTCP. They set different initial α values.

The second label sets the initial α value to zero. The third label sets the initial α value to

one. The fourth label is “Standard ECN”.

To see the improvement of transmission performance using the first modification, the

comparison of “FreeBSD DCTCP (a = 0)” with “Linux DCTCP” is used. To evaluate the

second modification, We compare “FreeBSD DCTCP (a = 1)” to “Standard ECN”. Because

DCTCP flows with the large initial α value behave like standard ECN flows in the beginning,

they should show the similar performance with standard ECN flows.

Incast: Figure 7.5 shows the result of the incast test. The difference of data transfer time

between Linux DCTCP and FreeBSD DCTCP is less than 1 millisecond. On the other
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hand, the difference of SRTT values is seen from over 100KB transmission. When FreeBSD

DCTCP flows transfer 800KB, they show 0.8 milliseconds larger SRTT than Linux DCTCP

flows. This is the influence of the first modification. As a FreeBSD DCTCP sender never

enters congestion recovery mode, it sets large CWND aggressively while a Linux DCTCP sender

stops the CWND growth. The aggressiveness of the CWND growth like DCTCP flows results in

the SRTT.

When using a large initial α for FreeBSD DCTCP senders, DCTCP flows reduce 3% of the

data transfer time in transmitting 800KB compared to the data transfer time of standard

ECN. Although DCTCP flows with the second modification reacts to the receipt of ECN like

standard ECN flows in the beginning of a TCP connection, they achieve the high utilization

of a available bandwidth in the end. On the other hand, because of the aggressive DCTCP

sender’s behavior, DCTCP flows with a large initial α expand the SRTT to 1.2 times rather

than standard ECN flows.

Queue buildup: Figure 7.6 shows the result of the queue buildup test when eight long

flows are running. The advantage of the DCTCP modifications is also seen when short and

long flows are mixed. DCTCP flows finish the data transmission around 1.1 times faster

than standard ECN in the maximum. On the other hand, Linux DCTCP flows show 2% of

shorter data transfer time for long flows than FreeBSD DCTCP flows in the maximum and

show 1.4 times larger standard deviation than FreeBSD DCTCP flows. This is the influence

of the first modification. The congestion recovery mode stops the CWND increasing for a RTT,

thus, the competitive short flows get more bandwidth. As a side effect of the cumulative call

of the congestion recovery mode, DCTCP long flows without the first modification make the

large standard deviation.

Interestingly, the data transfer time of DCTCP flows using a large initial α value is 5% of

longer than that of standard ECN flows in the maximum. This is because DCTCP short flows
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Figure 7.6: The result of the queue buildup test. FreeBSD DCTCP short flows using the
first modification only show short data transfer time than Linux DCTCP short flows while
keeping short data transfer time for long flows. DCTCP short flows using the large initial α
show 2% of an increase in the data transfer time rather than standard ECN short flows.

cannot quickly get high throughput when DCTCP long flows are running. At the moment

that short flows start, long flows have occupied an available bandwidth. When DCTCP is

used for long flows, long flows has utilized as much bandwidth as possible. Therefore, it

takes long time to get a bandwidth for standard ECN short flows. On the other hand, when

standard ECN is used for long flows, it is easy to get a bandwidth for DCTCP short flows

because standard ECN long flows save the input rate against an available bandwidth.

7.3 ODCTCP performance investigation

7.3.1 The combination of ODCTCP servers

There are many evaluation scenarios for ODCTCP when considering the combination of

the ODCTCP deployment to a network. This thesis chooses the simplest situation from

them.
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Table 7.1: Evaluation scenarios for ODCTCP senders
short flows long flows

label no. senders receivers senders receivers
1 Standard ECN Standard ECN Standard ECN Standard ECN
2 ODCTCP Standard ECN Standard ECN Standard ECN
3 Standard ECN Standard ECN ODCTCP Standard ECN
4 DCTCP DCTCP DCTCP DCTCP

Table 7.2: Evaluation scenarios for ODCTCP receivers
short flows long flows

label no. senders receivers senders receivers
1 Standard ECN Standard ECN Standard ECN Standard ECN
2 Standard ECN ODCTCP Standard ECN Standard ECN
3 Standard ECN Standard ECN Standard ECN ODCTCP
4 DCTCP DCTCP DCTCP DCTCP

The ODCTCP performance evaluation is divided into ODCTCP senders and ODCTCP

receivers. Table 7.1 shows all the protocol combination for the ODCTCP sender’s evaluation

. Senders use either standard ECN or ODCTCP and receivers use standard ECN. The table

7.2 shows all the protocol combination for the ODCTCP receiver’s evaluation. Senders use

standard ECN and receivers use either ODCTCP or standard ECN. The two tables separate

into short and long flows that use ODCTCP. This is because applications that use ODCTCP

depends on data center networks.

In order to quantify ODCTCP performance, choosing baselines is essential. This thesis

defines the first and the fourth label shown in Table 7.1 and Table 7.2 as baselines. This

is because the ODCTCP evaluation is motivated to see the performance in the incremental

deployment path. The first label assumes the network which is operated with the existing

kernel. The fourth label is equivalent to the ideal network which is operated with DCTCP

2. The experimental result of the second and the third label are expected to improve trans-

mission performance in the comparison with the result of the first label but are expected to

2DCTCP means modified DCTCP as below
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underperform in the comparison with the result of the fourth label.

Label numbers shown in Table 7.1 and Table 7.2 are used to understand the protocol

combination easily. The following figures of experimental results are represented by these

label numbers. Note that how the incast test and the fairness test represent the labels. For

the incast test, the experimental results are expressed by referring the congestion control

algorithm of short flows. Therefore, the first, second and fourth labels in the two tables

are used to show the result of the incast test. The fairness test does not use the result

using labels because it evaluates fairness between ODCTCP and standard ECN flows, or

the fairness between ODCTCP flows. Figures for the fairness test express each experimental

condition instead of labels.

7.3.2 Performance investigation for ODCTCP senders

This subsection shows the transmission performance when sending servers that use OD-

CTCP share a bottleneck with standard ECN flows. This thesis abbreviates a flow that

work with an ODCTCP sender on one endpoint as an ODCTCP flow in this subsection.

Note that ODCTCP flows win the data transfer time when ODCTCP and standard ECN

flows transfer data at the same time. This is because an ODCTCP sender always tries to

use an available bandwidth as much as possible while a standard ECN sender reacts too

aggressively to the available bandwidth.

Incast: Figure 7.7 shows the result of the incast test. When seeing the data transfer time

as shown in the top plot of Figure 7.7, there is no difference between ODCTCP and DCTCP

flows (See the result of the first and the third labels). Also, the SRTT in any amount of data

transmission is matched more than 99% between ODCTCP and DCTCP flows. This means

that ODCTCP flows behave like DCTCP flows in the incast traffic.

When comparison between (O)DCTCP and standard ECN flows, (O)DCTCP flows show
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1.2 times short data transfer time in transmitting 800KB. This result is reasonable because

(O)DCTCP flows try to use an available bandwidth as much as possible but a standard ECN

flows react too aggressively to the available bandwidth.

This influence is represented in the SRTT as shown in the bottom plot of Figure 7.7. For

example, standard ECN flows show 3% of smaller SRTT than (O)DCTCP flows in transmit-

ting 800KB. Because standard ECN flows react too much against the available bandwidth,

they achieve the shorter queueing delay than (O)DCTCP flows.

Queue buildup: Figure 7.8 shows the result of the queue buildup test when two long flows

are running. When seeing data transfer time as shown in the top plot of Figure 7.8, in the

maximum, ODCTCP short flows (the second label) reduce the data transfer time to 1.2

times compared to standard ECN short flows (the first label). This is reasonable because

ODCTCP short flows try to use an available bandwidth as much as possible while standard

ECN long flows generate a space against the available bandwidth.
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Figure 7.7: The result of the incast test. There is no difference of the data transfer time
between ODCTCP flows and DCTCP flows.

60



10 20 40 80 100 200 400 800
1.4

28.3
54.1

82.6
106.6

●

●

●

●

Avg. data transfer time of 10 short TCP connections
Tr

an
sf

er
 ti

m
e 

[m
s]

10 20 40 80 100 200 400 800
300
698

Avg. data transfer time of 2 long TCP connections

Data size [KB]

Tr
an

sf
er

 ti
m

e 
[m

s]

1st label in Table 7.1
2nd label in Table 7.1
3rd label in Table 7.1
4th label in Table 7.1

Figure 7.8: The result of the queue buildup test when two long flows are running. Using
ODCTCP for short/long flows improves the data transfer time of short/long flows as ex-
pected. As a side effect, competitive standard ECN flows require long data transfer time,
especially for short flows.

ODCTCP short flows (the second label) improve the data transfer time to 1.3 times com-

pared to DCTCP short flows (the fourth label). This is because standard ECN long flows

make a space to the bottleneck bandwidth rather than DCTCP long flows. In the result,

ODCTCP short flows get an available bandwidth more quickly than DCTCP short flows

and achieve short data transfer time.

When ODCTCP is used for long flows (the third label), the data transfer time of standard

ECN short flows are 1.3 times longer than either that of standard ECN short flows (the first

label) or that of DCTCP short flows (the fourth label) in the maximum, which is the inverse

result of the second label. Standard ECN short flows take long time to get the bandwidth

when ODCTCP long flows are running.

When seeing the data transfer time of long flows, any experimental scenarios in labels show

less than 30 milliseconds difference, which is equivalent to a 4% difference. The difference is
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Figure 7.9: The result of the queue buildup test when eight long flows are running. Using
ODCTCP for short/long flows improves the data transfer time of short/long flows as ex-
pected. As a side effect, competitive standard ECN flows require long data transfer time,
especially for short flows.

not statically significant.

Figure 7.9 shows the result of the queue buildup test when the number of long flows is

increased to eight. The features of the result is exactly same when the number of long flows

is two.

Fairness: The result of the fairness test is shown in Figure 7.10. Fairness indices between

ODCTCP flows show more than 0.99 regardless of the number of flows. In addition, the

average throughput corresponds to around 80% of the bandwidth with small standard de-

viation. Thus, we can say that a fair utilization of the bottleneck bandwidth is achieved

between competitive ODCTCP flows.

On the other hand, fairness indices between ODCTCP and standard ECN flows show small

values. Especially when the competitive number of flows is two, the fairness index shows the

smallest value, which corresponds to 0.7. This is because ODCTCP flows win the bandwidth
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Figure 7.10: Fairness test result. When ODCTCP and standard ECN flows share a band-
width, ODCTCP flows get more bandwidth than standard ECN flows. In the result, unfair-
ness indices are observed. Otherwise, ODCTCP senders show good fairness.

utilization against standard ECN flows as described in the result of the queue buildup test.

This influence is seen in the plot of the average throughput. When two flows are running,

around 80% of the bandwidth utilization is achieved between ODCTCP and standard ECN

flows but the standard deviation is pretty high, which is equivalent to 40% of the average

throughput.

Benchmark: The benchmark result shown in Figure 7.11 makes sure the study of mi-

crobenchmarks. When ODCTCP is used for short flows (the second label), ODCTCP short

flows improve the data transfer time compared to standard ECN short flows (the first label).

ODCTCP flows show 1.2 times as short data transfer time as standard ECN for 1 - 10KB

transmission and 1.2 times as short data transfer time as standard ECN for 10 - 100KB

transmission. In addition, when seeing the data transfer time of long flows, standard ECN

long flows in the second label almost improves the data transfer time compared to standard

ECN long flows in the first label. This is a by-product from ODCTCP short flows. Since
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Figure 7.11: The result of the benchmark test for the ODCTCP sender evaluation. Us-
ing ODCTCP for short/long flows improves the data transfer time of short/long flows as
expected. As a side effect, competitive standard ECN flows require longer data transfer
time.

ODCTCP short flows complete data transfer time more quickly than standard ECN short

flows, standard ECN long flows get the available bandwidth quickly when ODCTCP is used

for short flows.

When ODCTCP short flows (the second label) are compared to DCTCP short flows (the

fourth label), they improve data transfer time to 1.08 times in transmitting 1 - 10KB and

to 1.4 times in transmitting 10 - 100KB. This is the influence of standard ECN long flows.

Since standard ECN long flows reacts aggressively against the available bandwidth, OD-

CTCP short flows get more bandwidth than DCTCP short flows. In the result, in terms

of transmission performance of short flows, ODCTCP short flows win. On the other hand,

as expected, DCTCP long flows show shorter data transfer time than standard ECN long

flows.

When ODCTCP is used for long flows (the third label), ODCTCP long flows fasten data
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transfer time to 1.4 times in transmitting 100KB - 1MB, to 1.2 times in transmitting 1 -

10MB and to 1.1 times in transmitting more than 10MB compared to standard ECN long

flows (the first label). This result is reasonable because standard ECN short flows refrain

to utilize an available bandwidth although (O)DCTCP flows behave aggressively to the

available bandwidth. As a side effect, the data transfer time of standard ECN short flows is

larger than that of DCTCP short flows to 1.3 time in transmitting 10-100KB.

When compared to DCTCP long flows (the fourth label), ODCTCP long flows (the third

label) rebalance transmission performance. ODCTCP long flows show 1.01 times as long

data transfer time as DCTCP long flows for 100KB - 1MB transmission, 1.05 times as long

data transfer time as DCTCP long flows for 1 - 10MB transmission and 1.04 times as long

data transfer time as DCTCP long flows for more than 10MB transmission. For short flows,

standard ECN short flows increase the data transfer time to 1.1 times in transmitting 1-10KB

and to 1.3 time in transmitting 10-100KB.

7.3.3 Performance investigation for ODCTCP receivers

An ODCTCP receiver enables delayed ACK when the incoming packet sets the CWR flag.

This modification avoids the situation which the standard ECN sender unnecessarily sets the

small CWND. However, the probability that we can see the ODCTCP advantage at receivers

is low because the situation is limited when the receiver sends an immediate ACK against a

packet with the CWR flag. Therefore, in many experimental scenarios, the improvement of

transmission performance would be very small. Note that this thesis abbreviates a flow that

work with an ODCTCP receiver on one endpoint as an ODCTCP flow in this subsection.

Incast: Figure 7.12 shows the result of the incast test. When ODCTCP is used, ODCTCP

flows show the same data transfer time with standard ECN flows. In addition, the observed

SRTT values are same. This is the reasonable result because ODCTCP receiver has little
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opportunity to use the algorithm.

Queue Buildup: Figure 7.13 shows the result of the queue buildup test when two long

flows are running. When ODCTCP is used for short flows (the second label), ODCTCP
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Figure 7.12: The result of the incast test. As expected, there is no difference between
ODCTCP flows and standard ECN flows in terms of both data transfer time and SRTT.
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Figure 7.13: Queue buildup test result when two long flows are running. As expected,
ODCTCP short flows show the same data transfer time with standard ECN short flows.
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short flows show 2.4 milliseconds shorter data transfer time than standard ECN short flows

(the first label) and 2.1 milliseconds longer data transfer time than DCTCP short flows

(the fourth label) in transmitting 800KB. However, the difference corresponds less than 1%

against the data transfer time so that it can be ignored. This is the reasonable result because

ODCTCP receiver has little opportunity to use the algorithm.

When ODCTCP is used for long flows, standard ECN short flows show 2.1 milliseconds

shorter data transfer time than standard ECN short flows (the first label) and show 6.9

milliseconds longer data transfer time than DCTCP short flows (the fourth label) in trans-

mitting 800KB. However, the difference corresponds less than 1% against the data transfer

time so that it can be ignored. This is also the reasonable result because ODCTCP receiver

has little opportunity to use the algorithm.

When seeing the data transfer time of long flows, the difference between any two labels is

less than 30 milliseconds, which is equivalent to 6% difference. The difference is not statically

significant.

Figure 7.14 shows the result of the queue buildup test when the number of long flows is

increased to eight. When ODCTCP is used for short flows (the second label), ODCTCP

short flows show less than 1% of the difference of the data transfer time in transmitting

less than 100KB compared to standard ECN short flows (the first label). However, the

difference of data transfer time becomes long for large amount of data transmission. When

transmitting 800KB, ODCTCP short flows show 1.2 times longer data transfer time than

standard ECN short flows.

This is unexpected because ODCTCP receiver algorithm has eliminated a transmission

performance impairment. A considerable cause is the temporal disabling of the delayed

ACK algorithm in other situation. When the ODCTCP receiver gets the successive turns

of a CE bit, it acks per packet. Then, the standard ECN sender transmits the smaller
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Figure 7.14: Queue buildup test result when eight long flows are running. Surprisingly,
ODCTCP short flows require longer data transfer time than standard ECN short flows. It
may be the negative influence of delayed ACK disabling on the ODCTCP receiver.

number of packets at once in that case. See the difference between Figure 5.7 and Figure

5.8. While the DCTCP receiver responses ACKs against the successive turns of a CE bit,

the standard ECN sender transmits packets with fine-grained granularity although the total

amount of transmitting packets does not differ. When the frequent disabling of the delayed

ACK algorithm occurs, the sender gives a space to the available bandwidth for a short period

for the competitive flows and standard ECN long flows may behave aggressively in the result.

As the ground is not sure, this is one of future work to be investigated.

When ODCTCP is used for long flows, standard ECN short flows (the third label) improve

the data transfer time to 1.1 times in transmitting 800KB compared to standard ECN short

flows (the first label). Standard ECN short flows also shows 1.1 times shorter data transfer

time than DCTCP flows (the fourth label). This is the inverse result when ODCTCP is used

for short flows. Because ODCTCP long flows gives a space to the bandwidth by disabling

delayed ACK, the competitive short flows may transfer data quickly.
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Figure 7.15: The result of the Fairness test. ODCTCP flows show good fairness as expected.

When seeing the data transfer time of long flows, less than 40 milliseconds difference is

seen, which is equivalent to 2% of the difference. The difference is not statically significant.

Fairness: Figure 7.15 shows the result of the fairness test. When ODCTCP and standard

ECN flows share a bottleneck link, the fairness indices show more than 0.98 regardless of

the number of competitive flows. In addition, the average of throughput shows around 80%

of the maximum bandwidth. Therefore, we can say that ODCTCP flows fairly share a

bandwidth with standard ECN flows.

When a bottleneck link is shared among ODCTCP flows only, the fairness indices are

more than 0.99 regardless of the number of competitive flows. In addition, the average of

throughput shows around 80% of the maximum bandwidth. Therefore, we can say that the

fairness between ODCTCP flows is also pretty good.

Benchmark: Figure 7.16 shows the benchmark result. Although a strange result is observed

in the queue buildup test shown in Figure 7.14, the tendency has not seen in the benchmark

test.
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Figure 7.16: Benchmark result for the ODCTCP receiver evaluation. Using ODCTCP for
short/long flows slightly improves the data transfer time of short/long flows and rebalances
the transmission performance.

When ODCTCP is used for short flows, ODCTCP short flows show 1.2 times shorter data

transfer time than standard ECN flows in transmitting 1 - 10KB and same data transfer

time than standard ECN short flows in transmitting 10 - 100KB. In addition, ODCTCP

short flows save 6% of shorter data transfer time than DCTCP flows in transmitting 1 -

10KB and data transfer time than DCTCP flows to 1.2 times in transmitting 10 - 100KB.

However, ODCTCP short flows makes standard ECN long flows delayed as the side effect.

Standard ECN long flows require 1.4 times longer data time than DCTCP long flows in the

maximum. This result is expected because ODCTCP flows work better than standard ECN

flows but worse than DCTCP flows. From this result, we can say that using ODCTCP for

short flows improves the data transfer time and rebalances transmission performance in the

network which deploys ODCTCP partially.

When ODCTCP is used for long flows, the data transfer time of ODCTCP flows show the

same data transfer time with that of standard ECN flows in transmitting 100KB - 1MB, 1.1
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times as small as that of standard ECN flows in transmitting 1 - 10MB and 1.2 times as small

as that of standard ECN flows in transmitting more than 10MB. In addition, DCTCP long

flows require longer data transfer time than standard ECN flows to 1.5 times in transmitting

100KB - 1MB, longer data transfer time than DCTCP flows to 1.1 times in transmitting 1 -

10MB and the almost same data transfer time than DCTCP flows in transmitting more than

10MB. Therefore, we can say that using ODCTCP receivers for long flows also rebalances

transmission performance in the partially ODCTCP deployed network as expected.
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Chapter 8

Conclusion and Future work

A data center network for soft real-time applications has three requirements: high burst

tolerance, short latency for short flows and high throughput for long flows. To meet these

requirements, SACK TCP is an inappropriate protocol because large FIFO buffers in the

presence of bulk transfers impacts latency-sensitive flows. DCTCP is an advanced TCP

which leverages ECN for high burst tolerance. However, a downside remains in the incre-

mental deployment path of DCTCP. Due to the DCTCP compatibility issues, using DCTCP

in the partial servers or flows degrades transmission performance.

This thesis proposes ODCTCP, which allows us to use DCTCP on one endpoint in the

network where servers and switches use standard ECN. ODCTCP modifies two things in the

DCTCP algorithm: one applies in the DCTCP sender algorithm to support a compatibility

with standard ECN and the other applies in the DCTCP receiver algorithm to eliminate the

possibility which the peer underestimates window size.

The simple experiment results show that the partial ODCTCP deployment eliminates per-

formance impairments and improves data transmission performance in the network in com-

parison with the network where all servers use standard ECN only. When the ODCTCP

sender algorithm is used for short flows only, ODCTCP short flows show up to 1.2 times as

short data transfer time as standard ECN short flows in the traffic mixed short and long
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flows. When the ODCTCP receiver algorithm is used for short flows only, ODCTCP short

flows show up to 1.2 times as short data transfer time as standard ECN short flows in the

traffic mixed short and long flows.

The DCTCP implementation described in this thesis will be merged into the main stream of

the FreeBSD kernel in near future. Therefore, All FreeBSD users can easily deploy ODCTCP

in the data center network. This activity will also provide a positive impact to IT enterprise.

This thesis remains future work which relates with the DCTCP implementation choices.

One is the DCTCP behavior when the receiver buffer is tuned by applications. In the

real world, many applications control data transmission rate by tuning the receiver buffer.

Neither ODCTCP nor DCTCP considers the usefulness of this condition. They assume all

the applications controls congestion in the transport layer. The other is α update interval

at the DCTCP sender. Although DCTCP paper defines an α update interval as every CWND,

why this interval is proper is big question. Instead of it, for example, we can update α every

ACK. Using frequent α update grabs a prompt congestion change. In addition, when a RTT

is large, the frequency of an α update interval helps to identify the current congestion. The

investigation of the transmission impairments for the two must be considered in the future.
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