
An Experimental Evaluation of
Voice-over-IP Quality over the Datagram

Congestion Control Protocol

School of Engineering and Science
International University Bremen

May 2006

Vlad Balan

Review Committee: Jürgen Schönwälder
Lars Eggert

I hereby certify that the current thesis is independent work that has
not been submitted elsewhere.

Abstract

The presence of voice-over-IP traffic in the Internet is constantly increasing,
as it offers improved connectivity and quality-of-service comparable to classi-
cal telephony at costs that the rival circuit-switched telephony systems cannot
match. This paper evaluates the audio quality of voice-over- IP calls that use
the Datagram Congestion Control Protocol (DCCP), a congestion-controlled
alternative for the User Datagram Protocol (UDP) that carries most voice-
over-IP calls today. A framework for assessing the impact of the transport layer
on VoIP streams is presented. The experimental results illustrate some of the
problems that the proposed congestion control methods face in preserving the
perceived quality of VoIP transmission. The contributions of the current thesis
are twofold. It evaluates the performance of the currently proposed congestion
control methods in transporting VoIP traffic, and tries to illustrate some of their
possible shortcomings. It also establishes a testing methodology for evaluating
the impact of transport protocols on VoIP quality.

Contents

1 Introduction 3

2 The DCCP Protocol 5
2.1 Protocol Description . 5
2.2 Congestion Control - TFRC and Variants 9

2.2.1 TCP Reno congestion control 12
2.2.2 TCP Friendly Rate Control 13
2.2.3 TFRC for small packets 14
2.2.4 Faster Restart for TFRC 15
2.2.5 ECN Network Support . 15

2.3 DCCP Mechanisms Implementation 16
2.3.1 The KAME implementation 16
2.3.2 The Packet-Ring socket API 16
2.3.3 User-space implementation specifics 17

3 The Impact of DCCP on VoIP 19
3.1 Strategies for VoIP DCCP Applications 19
3.2 Factors affecting VoIP transmission quality 21
3.3 Perceived quality models . 22

3.3.1 PESQ . 22
3.3.2 E-Model . 24

3.4 Statistical Properties of Voice Streams 25
3.5 Optimizing the Perceived Quality 25
3.6 Adaptive Codecs . 26

4 Evaluating VoIP Quality 28
4.1 Generating Conversation-Like Data 28
4.2 A Metric for Quality . 29
4.3 Playout Buffer Performance Bounds 30
4.4 Experimental Setup . 33

5 Experimental Results 34
5.1 Results . 34
5.2 Discussion . 43

6 Conclusion 46

1

Acknowledgements

I would like to thank Lars Eggert, Saverio Niccolini and Marcus Brunner at
NEC as well as prof. Jürgen Schönwälder at IUB for supervising this thesis
and for their support during my work. I would like to thank Mr. Yoshifumi
Nishida for his kind support in adapting the KAME DCCP implementation to
the purposes of our experiments. Finally I would like to thank my family as
well as my colleagues in Heidelberg and in Bremen for their support.

Chapter 1

Introduction

The presence of voice-over-IP traffic in the Internet is constantly increasing,
because it offers improved connectivity and quality-of-service comparable to
classical telephony at costs that the rival circuit-switched telephony systems
cannot match. This paper evaluates the audio quality of voice-over- IP calls
that use the Datagram Congestion Control Protocol (DCCP), a congestion-
controlled replacement for the User Datagram Protocol (UDP) that carries most
voice-over-IP calls today.

While the infrastructure of the Internet is adapting to the changing demands
of the transported traffic, the design of its transmission protocols remains more
appropriate for data streams than for multimedia or voice streams that require
low-latency delivery. The key to the advancement of the new services is the
ability to provide a decent perceived quality and to adapt to the rapid network
growth.

For many years, provisioning has been the strategy of choice for improv-
ing the quality of offered services. Because many of the connections that will
be used in the future as attractive replacements for classical telephony will be
bandwidth-limited, partly due to a lack of available bandwidth in the case of
many edge connection situated in developing areas, it seems that finding a solu-
tion for dealing with congestion for streams having tight delivery requirements
can no longer be avoided.

The slow adoption of technologies such as IPv6, IPSec or ECN has proven
that modifications of the core network architecture are difficult to achieve in a
reasonable time frame. As described by the IAB [1], while traffic management
alternatives offering differentiated services have been developed and occasion-
ally deployed on particular network segments, VoIP traffic over best-effort is
expected to rise significantly as the wide-spread deployment of the Internet
continues. In order to prevent a probable congestion control caused by media
streams, end-to-end congestion control has to be extended for accommodating
interactive multimedia streams.

DCCP is an alternative to the UDP transport protocol, prevalently used for
multimedia-stream transmission, which adds customizable congestion-control
capabilities and makes congestion occurrence visible to the upper-layer applica-
tions. Although TCP also provides congestion control, its methods are closely
related to the reliable nature of the protocol, and to the bulk nature of the data
transfers. By contrast, DCCP’s congestion control mechanisms try to better

3

serve multimedia applications.
The purpose of the current work is to evaluate the impact that DCCP’s

different proposed congestion control methods have on the perceived quality of
VoIP transmission. The methods analyzed are the TCP Friendly Rate Control
(TFRC), as standardized for DCCP, TFRC for small packets and the faster
restart variant of TFRC for small packets .

Chapter 2 gives an overview of the DCCP protocol, its currently defined
congestion control methods, the KAME implementation used in the current
experiments and the proposed APIs for interfacing DCCP with user-space ap-
plications.

Chapter 3 addresses some of the issues appearing when sending VoIP traffic
over a congestion-aware protocol. It continues by giving an overview of the
assessment methods of the perceived quality of voice transmission, also in the
context of packet-switched networks. The chapter discusses some statistical
properties of voice streams that might be used in trying to optimize the quality
of the transmission. Finally, some strategies for dealing with congestion build-up
in the case of variable rate codecs are presented.

Chapter 4 presents the experimental setup and the metrics involved in the
quality evaluations. The chapter begins with a description of the conversation
model used for generating speech patterns, followed by the presentation of the
metric used in evaluating the way in which packet transmission reflects in voice
quality. Next, it presents an algorithm for bounding the performance of playout
buffers, adapted for fitting the quality estimation requirements. In the end, it
introduces the characteristics of the experimental setup.

Chapter 5 proceeds to the experimental results and discusses their signifi-
cance. It presents an overview of the main conclusions derived from the experi-
ments performed. The performance of the various variants of TFRC is compared
to the one of UDP and TCP, and the reasons affecting it are shortly discussed.

Chapter 6 summarizes the experiments and methods presented throughout
the thesis and derives conclusions related to the research question. It also in-
dicates some possible future research themes related to the quality of VoIP
transmission over DCCP.

The contributions of the current thesis are twofold. It evaluates the per-
formance of the currently proposed congestion control methods in transporting
VoIP traffic, and tries to illustrate some of their possible shortcomings. It also
establishes a testing methodology for evaluating the impact of transport proto-
cols on VoIP quality.

Chapter 2

The DCCP Protocol

The current chapter gives an overview of the DCCP protocol, its currently de-
fined congestion control methods and of the implementation used in the current
experiments. Two proposed APIs are discussed.

2.1 Protocol Description

The Datagram Congestion Control Protocol (DCCP) is a transport protocol
oriented towards the delivery of unreliable datagrams. The main design objec-
tive and extension over the traditional UDP protocol was to assure congestion
control for its datagram flows.

DCCP has a modular design, separating the core functionality of the protocol
from the implementation of the congestion control mechanism.

The main features of the core protocol are, as stated in [2]:
An unreliable flow of datagrams, with acknowledgments - Just like UDP

datagrams, DCCP datagrams are not subject to retransmission, the protocol
being intended for applications for which the timely transmission of data is
more important than its overall consistency. Since the majority of congestion
control methods relies on acknowledgments of sent data packets, the extension
to the classical UDP send-and-forget scheme is that each sent packet must be
acknowledged. The actual form of the acknowledgment can be chosen by the
congestion control method from individual or piggy-backed acknowledgment
packets or acknowledgment vectors sent as DCCP options.

Reliable handshakes for connection setup and teardown - DCCP is a connection-
oriented protocol, in order to allow better interaction with middleboxes (fire-
walls and NATs will be able to detect the establishment of the connection and
better map the traffic). The initial phase of the connection is a three-way hand-
shake, involving possibly feature negotiation and a cookie to be returned by the
client. DCCP introduces the concept of services (32-bit Codes) that identify
the application-level service to which the client is trying to connect. Note that
in TCP or UDP a similar role is fulfilled by the port numbers.

Mechanisms allowing servers to avoid holding state for unacknowledged con-
nection attempts and already-finished connections - During the initialization
phase of the connection the server generates a cookie intended for the server to
avoid generating state until the three-way handshake has completed.

5

During the connection-termination phase, or at any point when a proto-
col malfunction-operation is detected, a party can finish a connection using a
DCCP-Reset packet, and discard all state associated with the connection.

Congestion control incorporating Explicit Congestion Notification (ECN) [3]
and the ECN Nonce [4] - DCCP implementations are ECN-aware, and in most
situations treat ECN marked packets similarly to dropped packets in computing
the modifications to the transmit rate.

Acknowledgment mechanisms communicating packet loss and ECN informa-
tion - DCCP acknowledgments report lost or ECN-marked packets, corrupt or
dropped data. Packets can be acknowledged through acknowledgments pack-
ets generated at a certain Ack Ratio of the received packets, or through Ac-
knowledgment vector option, which store run-length encoded acknowledgment
information. Mechanisms have been devised in order to insure the consistency
of acknowledgment packets (a source for inconsistency could be packet duplica-
tion).

Congestion Control Mechanisms may use additional information such as time
stamps in computing the transmit rate.

Optional mechanisms for informing the application of congestion events.
Path Maximum Transmission Unit (PMTU) discovery - DCCP provides

PMTU support, and a DCCP implementation should prevent applications from
writing datagrams that will exceed the MTU, unless the application has re-
quested that fragmentation should be performed.

A choice of modular congestion control mechanisms Applications have the
possibility to choose the preferred congestion control mechanisms.

The protocol has the following main components:
Packet types The packet types of the protocol are:

• DCCP-Request initiates a connection

• DCCP-Response sent by the server in response to a DCCP-Request

• DCCP-Data used to transmit data

• DCCP-Ack used to transmit pure acknowledgments

• DCCP-DataAck used to transmit data with piggybacked acknowledgments

• DCCP-CloseReq used by the server to request that the client close the
connection

• DCCP-Close used by the client or the server to close the connection; trig-
gers a DCCP-Reset in response

• DCCP-Reset used to terminate the connection, either normally or abnor-
mally

• DCCP-Sync, DCCP-SyncAck used to re-synchronize sequence numbers
after large bursts of losses

Sequence numbers - DCCP packets carry sequence numbers, to make pos-
sible the identification and reporting of lost packets. DCCP sequence numbers
increment by one per packet, and every packet, no matter of its type, increments
the sequence number, allowing DCCP to detect all packet loss.

States DCCP defines the following states:

80 16 24

Source Port Destination Port

Type CCVal Sequence Number

Data Offset #NDP Calen Checksum

Reserved Acknowledgement number

Figure 2.1: DCCP - a generic header and an acknowledgment [5].The packet
formats are described by the DCCP draft.

• CLOSED represents nonexistent connections.

• LISTEN represents server sockets in the passive listening state

• REQUEST a client socket enters this state, from CLOSED, after sending
a DCCP-Request in order to start a connection

• RESPOND a server socket enters this state, from LISTEN, after receiving
a DCCP-Request from a client

• PARTOPEN a client socket enters this state after receiving a DCCP-
Response from the server. After entering this state, the client must include
acknowledgments in its packets, and can start sending data packets.

• OPEN the data transfer option of a DCCP connection, applying to both
client and server

• CLOSEREQ a server socket enters this state to signal that the connection
is over, and the client should enter TIMEWAIT

• CLOSING this state applies to both client and server, and they enter it
in order to close the connection

• TIMEWAIT Server or client sockets remain in this state 2MSL (4 minutes)
in order to prevent mistakes due to delivery of old packets. Only one
connection endpoint needs to enter this state, and the server can use the
CLOSEREQ packet in order to ask the client to enter it.

The state diagram of the protocol is provided for both the client and the
server.

Congestion Control - DCCP’s main design purpose was to offer efficient con-
gestion control for multimedia streams. To this end, support for implementing
different congestion control schemas was implemented, from which applications
can choose. Each congestion control mechanism is identified by a CCID, and
the communicating parties agree through feature-negotiation on the mechanism
to be used. Currently two mechanisms have been standardized:

• TCP Like Congestion Control (CCID 2) implements congestion control
through tracking a transmission window, and regulating the transmit rate
similarly to TCP.

Figure 2.2: DCCP State Diagram [6]

• TCP Friendly Congestion Control (TFRC) (CCID 3) implements conges-
tion control by tracking the rate at which packets are lost (but at most
one packet per RTT), and varies the transmit rate in a smoother manner,
using additive increases and subtractive decreases.

The behavior of the respective CCIDs are described in separate documents
[7] [8].

The two half-connection comprising a DCCP connection can be governed by
different congestion control mechanisms.

Features - DCCP features are connection attributes upon which the two
end-points agree, and can be referring to one connection endpoint. Their value
is negotiated through the use of the DCCP-Change and DCCP-Confirm packet
options.

The DCCP draft [2] provides the following example of a DCCP connection:

Client Server
------ ------

(0) No connection
CLOSED LISTEN

(1) Initiation
REQUEST DCCP-Request -->

<-- DCCP-Response RESPOND
PARTOPEN DCCP-Ack or DCCP-DataAck -->

(2) Data transfer
OPEN <-- DCCP-Data, Ack, DataAck --> OPEN

(3) Termination
<-- DCCP-CloseReq CLOSEREQ

CLOSING DCCP-Close -->
<-- DCCP-Reset CLOSED

TIMEWAIT
CLOSED

Figure 2.3: DCCP connection example

2.2 Congestion Control - TFRC and Variants

Congestion occurrence was first observed during the early stages of the Inter-
net [9] and rate regulating algorithms for data connections were introduced by
Jacobson [10] [11].

The assumption behind this early class of congestion response methods is
that the Internet is a black box, in which congestion occurs from time to time
and can be detected through packet drops. These algorithms rely on TCP
retransmission and are therefore intended for transfers of bulk of data, where
momentary rate decreases and delays due to retransmissions do not influence
significantly the quality of service. More exactly, upon detecting congestion

through packet drops, TCP will halve the transmit rate and retransmit the
affected packets.

drop area

time

packets

Figure 2.4: Simple Drop-Tail Queue

For interactive applications, relying on the low latency of the received data,
such a behavior is more problematic. Application developers would rather adopt
a more conservative sending rate than start facing congestion through packet
drops.

By contrast, a more modern class of congestion control methods tries to pre-
empt the congestion behavior and has to take into account the particularities of
the network devices involved in transmission and congestion control. Routers
have to provide support for such congestion detection and avoidance techniques,
and the transport layer protocols must act appropriately upon receiving a con-
gestion notification. Some of these protocols use the IP layer for transporting
congestion notifications, although this raises some problems in some environ-
ments such as tunneled connections.

As discussed in [12] the typical router maintains a packet queue for all flows
and drops only those packets for which the queue does not have available space,
as illustrated in Figure 2.4. The result of this is that the queue can be for a long
time in an almost filled size because flows might try to aggressively maintain
a large data transmit rate and periodically overflow the queue. This behavior
might seem fair; however we cannot ignore the importance of packet bursts in
Internet data transmission. A burst of packets will need a significant part of
the queue size, and if one of them will be dropped (very probable with a filled
queue) the connection will have to back off.

The RFC 2309 [12] presents the queue management algorithm Random Early
Detection (RED) devised to overcome this shortcoming of simple rate control.
RED divides the queue occupancy levels in thee zones:

• a safe zone, for which all packets are sent further

• a transition zone, for which packets are dropped probabilistically, with a
probability depending linearly on the level of occupancy of this zone

• a drop-zone, for which all packets will be dropped

The occupancy level of the queue (the average queue size) is computed using
a an exponentially weighted low-pass filter which has the role of allowing bursts
of traffic, since the average levels over time. The behavior of the RED queue
is illustrated in Figure 2.5. Packets from the same burst (corresponding to the
same flow) are more likely to receive the same marking, reducing thereby the
number of different flows interrupted.

This congestion detection algorithm addresses the following issues in an ef-
ficient way:

• allowing bursts of traffic

• avoidance of global synchronization, that is of a simultaneous requirement
for all flows to reduce their congestion window in the case of TCP

• enforcing a low-latency transmission (due to reduced average queue size)

• independence from the flow behavior

drop area

time

packets

probabilistic drop area

avearage queue size

Figure 2.5: A RED Queue

Another problem RED and other congestion control methods face is the dif-
ferent, possibly aggressive behavior of some flows (for example unregulated UDP
flows). Algorithms which maintain different queues for different traffic classes
or flows (CBQ or FQ) are necessary in this situation, otherwise a connection
lock-out might occur (a monopolization of the queue by one certain flow). Un-
der Linux, Generalized RED (GRED) provides such a differentiation of flows
[13].

Note that fragmentation of datagrams does not cope well with some packet
loss measurement techniques, since a packet loss translates into a whole data-
gram loss.

Note: In order for it to function properly a RED queue’s parameters should
probably be fixed after considering statistical data collected from monitoring
the traffic through the respective router.

2.2.1 TCP Reno congestion control

Some of the widely deployed TCP implementations in the Internet are based
on the 4.3BSD-Reno distribution, and its congestion control method is often
referred to as TCP Reno congestion control.

TCP Reno’s transmission window size W regulates the rate of transmission.
Initially the system starts with a default window size. As long as there is no
indication of congestion, the window size is steadily increased with a factor of
1/W for each received acknowledgment. The receiver sends an acknowledg-
ment for every b packets received, where for most TCP implementations b = 2.
Therefore the rate of transmission increases linearly in time at a slope of 1/b,
as illustrated in Figure 2.7.

The sender perceives packet loss either by the reception of “triple-duplicate”
acknowledgments (four packets having the same sequence number) or via time-
outs. In the presence of duplicate acknowledgments, the sender halves the trans-
mit rate, while upon perceiving a timeout, the sender reduces the transmit rate
to one packet per time T0, and if timeouts repeat, the retransmission time is
doubled up to a maximal value of 64T0.

sending timeout

drop

packet timeout/T=To

packet timeout/T=2T
triple duplicated
ACK
B=B/2

rate increase
B = B+1/b

Figure 2.6: TCP-Reno states and actions

W

To 2To 4To
t

drop drop
timeout

timeout
timeout

Figure 2.7: TCP-Reno rate control as presented in [14]

Since any congestion-controlled protocol sharing a line with TCP flows is
supposed to achieve TCP-fairness (i.e., to have a similar transfer rate over dif-
ferent time intervals) different models that try to predict the rate achieved by

the Reno congestion control method under specific network conditions have
been developed. At least one of these models has been investigated not only
theoretically, but also compared with extensive observations of the behavior of
connections between hosts situated at different distances on the Internet.

[15] presents a stochastic, Markov-based model of TCP-Reno’s behavior un-
der a specific packet loss rate. Due to its complexity the complete model is
suitable for simulation but does not seem to have a closed solution. However,
under specific assumptions the author obtains an accurate formula for the data
rate of a TCP connection:

X(p) =
s

RTT
√

2bp/3 + T0(3
√

3bp/8)p(1 + 32p2)

where

• X is the transmit rate in bytes/second

• s is the packet size in bytes

• RTT is the round trip time in seconds

• p is the loss event rate, between 0 and 1, of the number of loss events as
a fraction of the number of packets transmitted

• T0 is the TCP retransmission time in seconds

• b is the number of packets acknowledged by a single TCP acknowledgment

The transmit rate cannot exceed the value Wmax

RTT where Wmax is the maximal
TCP window size.

Note: TCP-SACK (TCP with selective acknowledgments) congestion control
is becoming the more popular choice for congestion control in modern systems
also due to the advance of wireless communication, in which occasional losses
of packets are frequent but do not necessarily indicate congestion. The Linux
and FreeBSD TCP stack implementations also deviate from the TCP-New Reno
specification and implement TCP-SACK. For a detailed summary of the imple-
mentation differences between 4.3BSD-Reno and the Linux stack please consult
[16].

2.2.2 TCP Friendly Rate Control

RFC 3448 [17] describes TFRC, a congestion control method designed to pro-
vided a smoother throughput of data more suited for multimedia applications.
TFRC is further developed into a DCCP congestion control method in RFC
4342 [8]

TFRC uses the equation presented above in order to regulate its data through-
put rate. The only parameters of the equation that must be estimated from
measurements are the round trip time and the packet loss rate. Since RTT esti-
mation is also common to TCP, in the following only the packet loss estimation
process will be discussed.

Loss event rate measurement is performed at the receiver. Obtaining an
accurate and stable measurement can assure that the transmit rate will not
oscillate in a disruptive manner.

Assuming that all packets have unique sequence numbers, the receiver main-
tains a data structure which keeps track of which packets arrived and which are
still missing, and includes also the receiver timestamp for received packets. Loss
is detected by the arrival of at least three packets with sequence number higher
than the one of the expected packet. Successive losses occurring during the
same RTT period are considered a single loss event.

The missing packets create a loss history which is in turn translated into
a series of loss intervals In , describing the time elapsed between the observed
packet losses. The last eight loss intervals are added together with weighting
factors decreasing in order to favor the most recent measurements, giving an
average value Imean:

Imean =
7∑

i=0

wiIi

where wi = (1.0, 1.0, 1.0, 1.0, 8, 0.6, 0.4, 0.2)

The most recent interval (the one having as upper bound the current time)
is only taken into account if its presence would increase the Imean value. Finally
the value p is computed as

p =
1

Imean

The same RFC describes a history discounting mechanism that changes the
weights of the computed mean value when the most recent loss interval is more
than twice as large as the computed average loss interval. This mechanism is
designed to provide a more aggressive behavior in the absence of congestion.

Before the first loss event occurs, the sender finds itself into a so-called slow-
start mode. The length of the first loss interval is approximated by reversing the
rate equation, using the number of bytes received during the last RTT (X recv)
before the initial loss occurrence as the left-hand side.

A DCCP stream operating under TFRC congestion control will face the
following rate limitations:

• The transmission rate is upper bounded by X calc, the computed maximal
transmission rate

• The transmission rate is upper bounded by 2∗X recv, the rate reported
by the receiver through the last feedback packet; since feedback packets
occur at most once per RTT, this assures that the transmission rate can
at most double during one RTT.

• The transmission rate is lower bounded by s/R during the slowstart pe-
riod, and by s/t mbi during congestion avoidance, where t mbi = 64s

2.2.3 TFRC for small packets

VoIP applications send small payload packets separated by fixed time intervals.
[18] modifies the TFRC equation for dealing with this particular situation:

• the packet size s is fixed to 1500 bytes; TFRC streams sending small
packets aim for achieving the same bandwidth utilization as a TCP stream
using 1500 bytes-long segments.

• the send rate is multiplied by a factor s true/(s true + H), with s true
denoting the average packet size and H the size of the packet headers
(default value: 40 bytes).

2.2.4 Faster Restart for TFRC

VoIP application alternate periods of data sending with periods of idleness;
at the beginning of a talkspurt, the application will try to reach the codec’s
nominal rate as fast as possible; if the congestion control mechanism adapts too
slowly and the rate limitations cause the send buffer to fill up, the application
will experience packet losses.

As mentioned earlier, TFRC can only double the transmission rate during
one RTT; [19] allows the transmission rate to quadruple, as long as the network
has proven in the past that it can sustain the target transmission rate; for
this purpose a variable X fast max records the maximal rate achieved by the
sender during the last loss-free period. The network rate is quadrupled while
remaining under X fast max and doubled afterwards. The value of X fast max
will be halved after each loss event detection.

The second modification brought by the faster restart variant is the setting
of the initial transmission rate after an idle period to eight packets per RTT.

The current implementation, used in this project, emulates the faster restart
behavior by allowing the sender to quadruple the rate at all times, based on
the assumption that the safe rate X fast max will stabilize around the codec’s
nominal rate.

2.2.5 ECN Network Support

As mentioned earlier, packet dropping as a congestion notification method has
the disadvantage of compromising the quality of service of certain applications,
especially interactive ones, by disrupting the normal flow of data. For applica-
tions willing to maintain conservative transmit rates in exchange for obtaining
increased reliability, an early warning would be preferable. Explicit Network
Congestion (ECN) addresses exactly this problem.

The ECN defining document [3] states that two bits of the IP protocol header
should be used by the in-path routers in order to signal a potential congestion
condition. The second bit serves the purpose of providing a ECN nonce holder,
which, over a longer period of time, insures the fair behavior of the communi-
cation partners.

The corrective action upon this notification is left to the transport protocol.
Note that the ECN involves the intermediate routers (possibly using triggers
similar to the ones coming from a RED queue), the IP protocol for carrying the
notification and the nonce and the transport protocol for taking appropriate
action.

RFC 3168 [3] describes some special implementation issues of the protocol,
such as the fact that a congestion notification for a packet fragment at reassem-
bly will trigger a congestion notification for the full packet, or that IP tunnels
should mark embedded packets at decapsulation if congestion occurs during
transport. Encrypted transports such as IPsec raise additional problems.

The success of ECN congestion control depends on its the degree of deploy-
ment in the routers, especially those sitting at the edge of the network where

congestion is likely to occur. Since ECN offer the possibility of regulating traffic
without quality disruptions, its advance is linked to the expansion of interactive
applications.

The open-source operating systems FreeBSD and Linux as well as the major
vendors for routers have added ECN support. It is up to the system adminis-
trators to use this option properly for offering improved performance.

2.3 DCCP Mechanisms Implementation

The current section presents the DCCP implementation used in the experiments,
and gives an overview of two of the proposed protocol APIs. The first API is
based on shared memory zones between the kernel and the application, tries to
achieve high performance and offers the possibility of late decision on the actual
packets to be sent. The second API is based on the classic sockets interface,
minimizing the complexity of porting applications to the new protocol.

2.3.1 The KAME implementation

The FreeBSD KAME kernel includes a DCCP protocol implementation based
on the Lulea University DCCP for FreeBSD project [20]. This implementation
is maintained by Yoshifumi Nishida.

The code implements currently most of the core DCCP functionality, includ-
ing feature negotiation, and has a modular design which allows the addition of
different CCID modules.

The implementation supports currently CCID 3 (TFRC), intended mainly
for multimedia applications. The VoIP variant of CCID 3 will follow.

A number of networking tools have been patched to support the new protocol
under this implementation (the socket API for DCCP is not yet standardized).
These applications include:tcpdump, ethereal, iperf, netcat.

We have developed a ttcp clone, named kttcp, capable of reading framed
data from the standard input and sending it over TCP, UDP or one of the
DCCP congestion control modes to another endpoint of the network, where it
will be printed on the standard output. The application is capable of gathering
packet statistics.

The DCCP implementation has been extended during this project for sup-
porting TFRC for small packets, TFRC for small packets with faster restart,
and a modified version of the faster variant method. In order to comply with
the requirements of interactive media traffic transmission, a sysctl handle for
adjusting the size of the send buffer has been added.

2.3.2 The Packet-Ring socket API

Eddie Kohler and Junwen Lai have proposed a novel API for managing the
transmission of unreliable datagrams using DCCP [21]. The API has as its
strong-points high throughput, kernel-enforced congestion control and late data
choice, i.e. the application can commit to sending a piece of data very late in
the data sending process. The constructive design of the API encourages appli-
cations to assign priorities to the packets constructed and, in case congestion
is detected, select the most important ones for transmission. This approach

matches the design of most modern codecs, for which certain frames (for exam-
ple synchronization frames) have a much larger qualitative impact than others.

The classical sendmsg() API allows the kernel to perform buffering of packets
to be sent, and such buffering is likely to occur under congestion. Applications
might want to exchange this increase in reliability for timeliness of the delivery.

The solution proposed as an alternative is using a packet ring data structure,
stored in memory shared by the application and the kernel, in a manner similar
to DMA rings. The application queues packets for transmission by placing them
at the end of the packet ring, transparent to the kernel.

For communication between the kernel and the application, four pointer
variables are available: dev i, kern i, umod i, user i. Their relative order is
fixed, and the kernel has control over dev i and kern i while the application has
control over umod i and user i. umod i marks the limit between the packets
that the kernel can send and the ones that the application can still modify.

dev_i kern_i umod_i user_i

Figure 2.8: Packet ring

The benefits of using this API are double: not only does the application
achieve faster transmission of datagrams, but in case of congestion the more
important datagrams have a higher chance of making it through.

One could further develop this idea into a sendmsg()-like transmission func-
tion having a priority parameter for allowing the selection of packets to be trans-
mitted in case of congestion. In this way the changes to the existing codebase
currently running on top of UDP would be minimal.

2.3.3 User-space implementation specifics

An user-space application willing to use the DCCP protocol as its transport can
invoke it through an adapted socket API. The steps to be taken for opening and
using a DCCP connection are the following:

• Filling out a hosthints structure(client). The hosthints structure to be
used by getaddrinfo() for a client must be filled with the values
ai socktype = SOCK CONN DGRAM and ai protocol = IPPROTO DCCP.

• Setting the hostflags to AI PASSIVE (server).

• Calling the getaddrinfo() function(client).
Note: The getaddrinfo() function does not yet support DCCP hints.

• Initializing a socket. The socket() call uses the hostinfo structure filled by
getaddrinfo()

• Binding the socket (client)

• Setting the CCID
int ccid; setsockopt(fd, IPPROTO DCCP, DCCP CCID, &ccid, sizeof(ccid))

• Setting the maximum segment size option
int buflen; setsockopt(fd, IPPROTO DCCP, DCCP MAXSEG, &buflen,
sizeof(buflen))

• Setting the DCCP service option. The role DCCP service option is anal-
ogous to the one of a port for a UDP or TCP socket. setsockopt(fd, IP-
PROTO DCCP, DCCP SERVICE, dccp services, dccp services nr * sizeof(int))

• Create a connection(client). Since DCCP is connection-oriented, the con-
nect() function call has been extended for DCCP.
connect(fd, const struct sockaddr *name, socklen t namelen)

• Listen for a connection and accept incoming connections (server).
listen(fd, 0)
fd = accept(fd, struct sockaddr * restrict addr, socklen t * restrict addrlen)

• Write to the socket or read from it. The send() and recv() system calls
allow writing to or reading from the socket.

• Close the socket. The socket should be closed using close(fd)

The current chapter presented the DCCP protocol, its currently proposed
congestion control methods, and details of their implementations.

Chapter 3

The Impact of DCCP on
VoIP

The current chapter addresses some of the issues appearing when sending VoIP
traffic over a congestion-aware protocol. It continues by giving an overview of
the assessment methods of the perceived quality of voice transmission, also in
the context of packet-switched networks. The chapter discusses some statistical
properties of voice streams that might be used in trying to optimize the quality
of the transmission. Finally, some strategies for dealing with congestion build-up
in the case of variable rate codecs are presented.

3.1 Strategies for VoIP DCCP Applications

The draft [22] presents some of the problems that applications using DCCP for
VoIP telephony face. These problems originate in the following requirements of
VoIP services:

• Low latency: VoIP applications should have an end-to-end latency of
less than 150ms in order to present the user with a feeling of interac-
tivity. Users are accustomed to such delays from using the normal circuit-
switched phone service. While the latency is mainly generated by the
network’s behavior, an efficient strategy for VoIP applications should not
increase it, nor should it add to it the problem of jitter (variations of the
packet latency being perceived by the receiving user).

• Fast start: VoIP applications are based on codecs which usually have a
minimal required transmit rate. However, starting the transmission of a
stream with a somehow large byte rate does not fulfill the principles of
congestion control. Applications will probably have to cope with an initial
slow-start period.

• Silence suppression: Most modern codecs use silence detection mecha-
nisms and stop sending data packets when silence is detected, saving ac-
cording to measurements up to 70% of the available bandwidth. While
this change is quite steep for the codec generated data, when the codec
starts transmitting again the bandwidth increase will be again gradual

19

(see the previously discussed fast start problem). The alternatives dis-
cussed on the DCCP mailing list are: sending packets of varying size at
a constant rate with padding as content and using artificially generated
noise for forcing the codec to generate data continuously.

• Bandwidth variation: This problem, while similar to the one discussed
just before, is more likely to appear in combination with video codecs
generated streams, and the problems that it poses are harder to solve
than in the previous case.

A video codec can generate compressed frame data by calculating the
differences between successive frames. While between some frames these
differences are small, a change of the scenery for example can require a
so-called synchronization frame, generating additional data. According to
[22] these rate changes can have a relative factor of ten for example, and
can occur from one packet sent to another one, leaving a rate-controlling
strategy practically no time to adjust. Buffering-averaging methods could
be used for smoothing this fast increase, however they might contribute
to a depreciation of the quality of service perceived by the user. While
the factor of change for pure VoIP applications is such that the current
rate control strategy could adapt to it, one should consider the advance
of voice transmissions when designing a comprehensive strategy.

RFC 3448 [17] defines the TCP-Friendly Rate Control (TFRC) an alternative
to the TCP rate control method defined in RFC 2581 [11]. While TCP rate
control uses the Additive Increase Multiplicative Decrease (AIMD) method,
TFRC has a smooth response to packet loss.

Figure 3.1: TCP vs. TFRC rate control

It can be assumed, for an increase of generality that the application can use
a few nominal connection rates for sending data, resulting in different perceived
quality. This assumption gives more flexibility in constructing an appropriate
strategy.

In order to deal with the problems described above, the following strategy
has been proposed (Strategy 3 in the original document [22]):

• Startup rate increase: The connection setup should include an initial rate
increase phase in which no actual voice communication takes place. After

the initial connection establishment (for example through SIP messaging)
the two parties exchange idle data in order to achieve an appropriate rate
for beginning voice transmission. If this rate is not achieved within a
reasonable amount of time, the connection is interrupted and the call is
cleared.

• Congestion compensation: If congestion occurs during a call, TFRC will
reduce the sending rate, and the application can switch to a lower rate
codec. However, the application should pad its transmission to the allowed
TFRC rate, in order to determine TFRC to increase the sending rate
such as to allow the return to a higher-rate codec. This padding is only
necessary if the rate increase is desired.

• Playout buffer: A playout buffer of about 100 ms can reduce the jitter
experienced by the end-user.

The TFRC-VoIP mode comes to address further issues. This special TFRC
mode addresses applications using small-sized, frequently transmitted frames in
order to improve interactivity. According to the original document [22], usual
voice packet data sizes are 80 to 320 bytes, well-under the 1480 bytes MTU of
typical IP packets.

This can lead to problems, since while some network limitations are in bytes
per second, others (the ones originating in routers for example) might be in
packets per second, giving a DCCP stream less bandwidth than the one allocated
to a comparable TCP stream. The VoIP mode of TFRC is designed to address
such difficulties in applications using a transmission interval of at least 10 msec
between packets.

3.2 Factors affecting VoIP transmission quality

A typical VoIP application takes sampled and digitized equal-length intervals
of an audio signal which it compresses using a specialized codec, packetizes it
and sends it over the network. The receiver de-packetizes the data and places
it in a playout buffer, which has the role of compensating for the jitter that
occurs during transmission. The data is then decompressed and the voice signal
is replayed.

The sensible points influencing the perceived quality of the output signal are
the codec performance, depending also on the bandwidth usage, the amount
of networks loss, which can be to a point compensated by packet loss conceal-
ment methods, the network delay as well as the overall measured delay and the
network jitter (the variance of the network delay). From the factors mentioned
above, the network loss, network delay and jitter pertain to the underlaying net-
work and can be traced back to congestion situations, queuing strategies and
congestion control strategies while the other factors are application specific. Jit-
ter, for example, depends heavily on the intermediate router’s queuing behavior
and the presence of alternative routes between the endpoints.

On the application side, VoIP applications use adaptive playout buffers in
order to compensate for the jitter effect. Usually periods of silence are used for
adapting the buffer’s size. Moon, Kurose and Towsley present strategies that
can be used by applications in order to compensate for network jitter using
adaptive playout buffers, and give bounds on their possible performance [23].

Figure 3.2: VoIP transmission sequence

3.3 Perceived quality models

The interest in the assessment of end-to-end perceived quality of voice streams
has first appeared in the research of the telephony companies. Algorithms for
the qualitative evaluation of the transmitted signals relay on psychoacoustic
models, and due to their high complexity usually are applied on offline data
samples which are compared to the original ones.

Generally the measurement unit for the perceptual quality of a voice trans-
mission is the Mean Opinion Score (MOS), a subjective quality score ranging
from 1 (unacceptable) to 5 (excellent). These scores can be computed by using
subjective test or by analyzing the system using an objective model. For exam-
ple, the PESQ algorithm generates quality scores which correlate well with sub-
jective tests. The E-Model provides another way for generating quality scores
and is particularly suited to assessing the distortions which appear due to packet
transmission processes.

3.3.1 PESQ

The International Telecommunication Union (ITU) has developed the PESQ
algorithm as Recommendation P.862. PESQ is able to predict perceived quality
in a very wide range of conditions, including coding distortions, errors, noise,
filtering, delay and jitter. The techniques used by the PESQ algorithm are
documented in a series of articles by its authors. [24] [25]

The first problem that PESQ tries to solve is the detection of constant delay
and jitter in the output sample. The algorithm does not use classical transfer
function estimation or windowed cross-correlation techniques, but introduces a
histogram-based technique.

The reference and measured signals are filtered through a high-pass filter
during pre-processing. The motivation of this action is that while most of the
typical speaker’s voice signal’s energy is concentrated in the low-band (under
500 MHz) the components of the voice spectrum that influence the intelligibility
of the signal lie in the high-band.

A first approximation of the delay is given by the maximal cross-correlation
point of signal envelopes, 4-ms long nonoverlapping signal frames. Due to the
fact that the signal is highly nonstationary at this time scale, this indication
is likely to be quite precise. The approximated delay is afterwards eliminated
from one of the signals through a time shift.

In what follows the signals are divided into 64-ms 75%-overlapping frames
and the position of the maximal cross-correlation is computed for each frame.
The frame delays are then weighted according to their loudness and a running

average of these is the first estimate of the actual delay. This running value is
smoothed by convolution with a triangular filter, obtaining the delay estimate.

In packet-switched networks jitter is more common than constant delays.
Therefore the above-mentioned technique has been extended for the detection
of jitter by using different frame types. The underlying assumption of the al-
gorithm in this situation is that in the audio data corresponding to a certain
transmitted packet the jitter is constant.

The paper [26] describes the PESQ algorithm in more detail, with an em-
phasis on its quality computation technique. In PESQ the audio signals are
transformed into a psychoacoustical model representation, which in this case
is calculated on the basis of signal representations that use the psychophysi-
cal equivalents of frequency and loudness. The difference between the internal
representations of the input and the delay-compensated output represents the
audible difference of the two samples, which will in turn be used to predict the
perceived quality degradation.

Auditory
transform

Auditory
transform

Error parameter
extraction

Averaging/
regression

Prediction
of perceived

quality

System
under test

Degraded
signal

Reference
signal

Figure 3.3: PESQ algorithm assessment cycle

The first step of the quality measurement is the calibration of the output
signal for eliminating gain both in time domain and frequency domain by using
test signals. The resulting signal filtered in order to simulate the effects of a
headset on the output signal and its active speech part is isolated. In order
to simulate the time-frequency decomposition performed by the human ear,
a short-term FFT is applied to a window of 32-ms frames, overlapping in a
proportion of 50%, obtaining the power spectra of the original and degraded
signals. Effects that do not influence the psycho-acoustical perception, such as
linear gain or short time-varying gain are compensated. Afterwards the so-called
loudness density is computed, an indicator whose difference between the original
and degraded signal is used for calculating the disturbance density, which shows
the effects of noise on the signal.

The above-mentioned and other indicators have been correlated with the re-
sults of qualitative measurements performed by human subjects in order to train
it for independent usage. The trained PESQ algorithm has a correlation rate
of 0.935 with the human tests, making it a highly reliable quality measurement
technique.

While the PESQ algorithm is particularly well-suited for assessing the distor-
tions of the sound during transmission over a line which induces signal changes,
it was not designed for the realm of digital, packet-switched networks. Its com-
plexity makes it unsuitable for online quality comparison, and the final quality

score that it provides is dependent heavily on factors such as codec character-
istics, and in order to infer the exact effect of the network state parameters on
the quality score of the received signal further analysis will be required.

Given a time series representing packet end-to-end times or loss marks, we
would like to be able to estimate the perceived quality of the corresponding
voice transmission.

The preferred scale for classifying the perceived quality of a voice connection
is the mean opinion score (MOS), used in subjective quality evaluation tests,
and ranging on a scale from 1 (unacceptable) to 5 (best).

The International Telecommunication Union (ITU) has published the PESQ
algorithm as Recommendation P.862. PESQ is able to predict perceived quality
in a very wide range of conditions, including coding distortions, errors, noise,
filtering, delay and variable delay (jitter). The techniques used by the PESQ
algorithm are documented in a series of articles by its authors. [24] [25]

3.3.2 E-Model

The ITU-T E-Model [27] is an online analysis method generating a MOS score.
The E-Model defines a quality factor R, from which he MOS score is obtained
through the equation:

MOS = 1 + 0.035R + 7 ∗ 10−6R(R− 60)(100−R)

illustrated in Figure 3.4
The authors have emulated the speech quality evaluation process of PESQ

in measuring the quality degradation due to individual frame losses and have
formulated a theoretical model for both distant and burst losses. In the case of
burst losses correlation effects leading to increased perceptual distortion had to
be accounted for.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100

M
O

S
 s

co
re

R factor

1+0.035*x+7*0.000001*x*(x-60)*(100-x)

Figure 3.4: R factor - MOS score relationship

The E-Model has been further simplified [28] [29] for approximating the
quality of VoIP-transported conversations. Their model approximations are
capable, for the different codecs considered, to offer a quality statistic starting
from the series of delays and losses associated with packet transmission. In the
following chapter the E-Model based evaluation methods for packetized audio
transmission will be presented in the form of a quality metric.

Figure 3.5: Distribution of the packet importances [30]

3.4 Statistical Properties of Voice Streams

Hoene, Wiethoelter and Wollisz [30] have used the PESQ analysis method in
order to study the impact of different types of packet drop sequences upon the
perceived speech quality. They compared the difference between the original
audio streams and the streams decoded in the absence of individual frames.
The result of their MOS measurements for an 8s long sample with a varying
starting position and content of the dropped packet is shown in the figure 3.5:

The authors introduce a metric for the importance of the individual frame.
Let MOS(s) be the MOS score of sample with no packet drop, MOS(s, e) be
the MOS score under packet loss, with e being a vector describing the packet
losses and t(s) be the length of the respective sample. The importance Imp(s, e)
is defined as:

Imp(s, e) = (MOS(s)−MOS(s, e))t(s)

The above figure shows that the importance of most frames is relatively
negligible.

The authors have emulated the speech quality evaluation process of PESQ
in measuring the quality degradation due to individual frame losses and have
formulated a theoretical model for both distant and burst losses. In the case of
burst losses correlation effects leading to increased perceptual distortion had to
be accounted for.

As online evaluation algorithms for evaluating the importance of different
speech packets emerge, discriminative drop of packets might help increase the
quality of the arriving signal. This idea is again approached in a following
section.

3.5 Optimizing the Perceived Quality

As previously noted, streaming media packets have a largely varying impact on
the quality of the re-combined signal. For example, statistical measurements
show that few encoded speech packets have a high importance and standards

such as JPEG use synchronization frames which influence a longer series of
packets.

The congestion prevention characteristics of DCCP make it possible to select
before the actual transmission which packets should be dropped from the out-
going queue and allows the regulation of the queue’s behavior through a series
of informed decisions. While, upon congestion notification, DCCP could inform
the application of the new data transmission rate and request that the outgoing
data be replaced with data encoded at this rate, it seems far-fetched to assume
that an application could react in all cases appropriately fast. However, assum-
ing that the outgoing queue’s de facto rate is larger than the current transmit
rate, and that the application is interested in the timely transmission of data, it
is likely that the kernel will have to decide which packets should be transmitted
and which packets should be dropped.

We propose, therefore, an extension to the classic packet sending API, allow-
ing an application to inform the kernel of the pre-computed importance factor
of a given packet. This information could be sent either as an extra parame-
ter of the send function, or as ancillary data associated with DCCP packets.
The second information needed for applying this behavior is a time-stamp on
the outgoing packets, allowing the kernel to decide on their expiration moment.
The kernel might apply this timestamp during the execution of the write() call.

The kernel strategy would be to select the combination of packets for trans-
mission that, by accumulating their individual importances, maximize the total
importance and can be sent, at the momentary data rate, without exceeding
the expiration time of any of the packets included. Given that each packet has
an importance(gain) and a size factor(weight), this problem is an instance of
the well-known backpack problem.

3.6 Adaptive Codecs

Speech compression codecs for voice produce a stream of equally time-spaced
packets with their size varying depending on the amount of audio information
to be transmitted. This behavior is implemented using the so-called variable
bit rate (VBR) compression technique. Moreover, in periods when silence sup-
pression is active the codec can completely stop encoding. Therefore, a certain
variation of the bandwidth usage over time is to be expected, and since the
application has an interactive nature, requiring timely delivery of packets, this
variation must be permitted.

The same speech compression provide often an option for setting the target
average bit rate (ABR), which the codec is supposed to target when performing
VBR encoding. Applications can choose an encoding rate appropriate for the
available bandwidth, adverting packet loss, or can decide to drop the connection
if a minimal bandwidth is not available. The quality decrease due to a lower
bandwidth should be more acceptable than the one due to packet drops.

The application should be able to detect the admitted transmission rate.
Two methods are available:

• Reading through the socket API the data necessary for computing the
instantaneous transmit rate. It appears that at this moment the API
does not report the whole set of data needed for such an operation: while

Figure 3.6: After congestion is detected, the high quality packets are replaced
with smaller, lower quality packets which have a higher chance of arriving at
the destination.

the transmission window size is available, the RTT measured value is also
necessary.

• Measuring the delay induced by write() calls, and trying to approximate
the transmit rate from it. This method is less precise since it involves user-
space measurements, however, its accuracy might suffice for this purpose.

Based on this measurement, an application can instruct the codec to modify
the ABR for future packets, or, since voice encoding is a from a computational
perspective relatively inexpensive, decide to re-encode those packets still await-
ing to be sent (if an API such as the previously described packet-buffers is used).
Moreover, if the application experiences a sudden drop of the transmit rate, it
can choose to remove from the queue those packets which will be least missed
qualitatively in the voice signal’s reconstruction.

The current chapter addressed some of the issues appearing when sending
VoIP traffic over a congestion-aware protocol. It continued by giving an overview
of the assessment methods of the perceived quality of voice transmission, also
in the context of packet-switched networks and discussed some statistical prop-
erties of voice streams that might be used in trying to optimize the quality of
the transmission. Strategies for dealing with congestion build-up in the case of
variable rate codecs were presented.

Chapter 4

Evaluating VoIP Quality

The current chapter presents the experimental setup and the metrics involved
in the quality evaluations. The chapter begins with a description of the conver-
sation model used for generating speech patterns, followed by the presentation
of the metric used in evaluating the way in which packet transmission reflects
in voice quality. Next, it presents an algorithm for bounding the performance
of playout buffers, adapted for fitting the quality estimation requirements. In
the end it introduces the experimental setup used.

4.1 Generating Conversation-Like Data

Sriram and Whitt [31] introduce an on/off model for conversational patterns,
in which periods of voice activity of variable length alternate with periods of
silence. In the current approximation of the model we have generated, using
exponential distributions, periods of voice activity of 1 second average duration,
followed by periods of silence of 1.5 seconds average duration.

The input audio sequence is obtained by concatenating periods of continuous
speech with periods of silence. The resulting audio is processed through the
Speex audio codec for performing voice activity detection, and the resulting
audio frames sequence is padded and packetized in order to emulate either the
G729 or the G711 codec.

A segment of the resulting speech pattern is illustrated in Figure 4.1.

Figure 4.1: Resulting speech pattern

28

4.2 A Metric for Quality

The ITU-T E-Model [27] is an online analysis method generating a MOS score.
The E-Model defines a quality factor R, ranging from 1 to 100 as:

R = R0 − Is − Ie − Id + A

where the subfactors have the following meanings:

• R0 - the effects of noises

• Is - the effects of impairment occurring simultaneously with the voice
signal

• Ie - the effects of impairment caused by losses

• Id - the effects of impairment caused by delay

• A - compensates for the above impairments under certain conditions

The MOS score is obtained through the equation:

MOS = 1 + 0.035R + 7 ∗ 10−6R(R− 60)(100−R)

In a VoIP system, due to the fact that delays and losses are the main affecting
factors, the factors Id and Ie are the only variables left. Cole and Rosenbluth
have reduced the model to the following equation, using appropriately chosen
default values for the canceled factors:

R = 94.2− Ie − Id

Their tests have shown that the following defining relation for Ie can be used
in estimating the impact of loss:

Ie = λ1 + λ2 ln(1 + λ3e)

where λ1 quantifies the voice quality degradation due to the codec, λ2 and λ3

refer to the degradation due to loss and e represents the overall packet loss
rate. Values for the λ parameters have been determined through simulations of
different loss conditions for different codecs, and are reproduced in the Table
4.1 as published in [29] and [28].

Table 4.1: Coefficients for the calculation of the quality impairment due to loss
[29] [28]

Codec frames / pkt λ1 λ2 λ3

G.711 1 0 30 15
G.729 1 10 47.82 18
G.729A + VAD 2 11 30.00 16

Similarly the impact of delay has been modeled [28] as:

Id = 0.024d + 0.11(d− 177.3)I(d− 177.3)

Table 4.2: Interpreting R factors and MOS scores[28]
R MOS Quality

90 - 100 4.34 - 4.5 Best
80 - 90 4.03 - 4.34 High
70 - 80 3.60 - 4.03 Medium
60 - 70 3.10 - 3.60 Low
50 - 60 2.58 - 3.10 Poor

where I(x) is a unity step function and d is the total end-to-end delay. The
form of this equation is justified by the experimental observation that after a
threshold calculated at 177.3ms delays lead to a faster perceptual degradation.

The same authors interpret the MOS scores as indicated in Table 4.2.
The R factor under different loss and delay conditions is illustrated in Figure

4.2 for the G729 and G711 codecs.

 1e-04
 0.001

 0.01
 0.1 0

 100
 200

 300
 400 0

 25
 50
 75

 100
R

G729

loss
delay (ms)

R

 1e-04
 0.001

 0.01
 0.1 0

 100
 200

 300
 400 0

 25
 50
 75

 100
R

G711

loss
delay (ms)

R

Figure 4.2: R factor variation under delay and loss conditions for the G729 and
G711 codecs

4.3 Playout Buffer Performance Bounds

Cohen [32] was the first to mention the effect of jitter on audio packets traversing
multiple networks.

Packets arriving at the receiver suffer different delays in the network. In
order to provide a quality listening experience an audio application will try
to replay them with a relative delay corresponding to their sampling period.

Arriving packets will be placed in a so-called playout buffer and delayed in
order to achieve the same end-to-end delay for almost all/all packets within
a talkspurt. Packets that cannot be played within this bound will be silently
dropped.

Figure 4.3 gives a graphical depiction of the playout-buffer’s operation. For
each talkspurt a buffer management algorithm fixes a certain target delay (the
elevation of a line of slope 1 separating the played packets from the packets
silently dropped). The figure suggests that adjusting this value brings along a
compromise between end-to-end delay and the loss percentage of the connection.

Different online management algorithms have been researched, published
and are in usage in current applications (see [33], [23]), and the field is un-
dergoing further research. Some of these algorithms have specific assumptions
about the distributions of packet delays, for example they might be designed in
order to cope with bursts of packets resulting from a congestion-relieved router.
Currently, no buffer management method can be considered a standard, and
different methods offer quite different delay/loss exchange rates.

For the purpose of evaluating the quality of packetized audio connections,
some authors have proposed applying offline bounds on the performance of play-
out buffer management techniques. Rosenbluth and Cole [28] fix the end-to-end
delay for the entire length of the conversation, and obtain their delay value by
applying a Chernov bound on the arrival distribution. Tao and Guerin [34] de-
fine their fixed delay value as arg max(R(d)), where R(d) is the quality function
described in the previous section, applied on the series of packets resulting after
selecting d as a maximal end-to-end delay threshold.

Assuming that the delays induced by the transport layer’s congestion control
mechanism might be unevenly distributed, using the same target delay for the
entire conversation becomes inappropriate. A tight bound on the performance
requires that every talkspurt, considered a minimal unit for which all packets
must have the same end-to-end delay, be assigned its individually computed
delay.

send time

arrival time

loss

delay

Figure 4.3: Playout buffer operation

Moon, Kurose and Towsley have introduced [23] an algorithm based on dy-
namic programming for computing the minimal delay of each talkspurt, assum-
ing a maximum number of admissible losses caused by the output buffer in the
whole conversational pattern. In the following we introduce their notation and
give an overview of their method:

Let a trace consist of N packets grouped in M talkspurts. Define:

• nk the total number of packets in the k-th talkspurt

• tik, sender timestamp of the i-th packet in the k-th talkspurt.

• ai
k, receiver timestamp of the i-th packet in the k-th talkspurt.

• di
k the normalized delay of the i− th packet in the k-th talkspurt; the nor-

malized delay is the packet network delay ai
k − tik from which the minimal

packet network delay in the talkspurt has been deducted

• d
(i)
k is the i-th smallest normalized delay in the k-th talkspurt

• D(k, i) the minimum average delay possible when choosing i packets to
be played from the k-th to M -th talkspurt

Assuming that the packets in the different talkspurts cannot collide when
played out as a result of delays, the authors derive the following equation:

D(k, i) =



0 if i = 0
d
(i)
k if k = M and i ≤ nM

∞ if k = M and i > nM

min0≤j≤i

(
((i− j)D(k + 1, i− j) + jd

(j)
k)/i

)
,

otherwise

The values D(0, i), the minimal average delays of the entire connection, cor-
responding to different packet loss rates in the playout buffer, can be computed
in O(M ·N2) time.

Knowing that each delay d has a corresponding impairment Id, the method
presented above can be modified in order to obtain a minimal averaged delay
impairment (minimizing the value D(0, i) does not automatically minimize the
corresponding averaged Id, due to the non-linearity of the delay impairment
function). Let Id(k, i) be the minimum average delay impairment possible when
choosing i packets to be played from the k-th to M -th talkspurt.

Id(k, i) =



0 if i = 0
I
d
(i)
k

ifk = M and i ≤ nM

∞ if k = M and i > nM

min0≤j≤i

(
((i− j)Id(k + 1, i− j) + jI

d
(j)
k

)/i
)

,

otherwise

For each i, after taking into account the network and sender losses, a corre-
sponding loss impairment Il(i) is obtained. Denoting: R(i) = 94.2 − Id(0, i) −
Il(i), choose R = R(i), where i = arg maxiR(i) to be the upper bound on the
audio quality of the trace.

Note: In the previously presented algorithm for estimating the best playout
buffer decision it is assumed that all packets have a similar impact on the per-
ceived quality. However, this might not be the case and algorithms based on
more advanced quality measures might take a better-informed decision. For the
E-Model based metric, the choice of dropped packets is not important.

4.4 Experimental Setup

The network setup is illustrated in Figure 4.4. It consists of three source ma-
chines, one router machine and one machine acting as a sink. The three sources
are switched together to the same interface of the router;

Figure 4.4: Network topology

Each one of the three sources is running four encoder processes, simulating
the start point of an uni-directional voice connection (a DCCP half-connection).

Different network conditions are simulated by applying dummynet rules [35]
on the router’s outgoing interface. The experiments vary either the network
delay between 0 and 400 ms, or the network loss ratio between 0.001% and
0.1%, present in both directions of the connection. The losses are uniformly
distributed over time. We did not employ any models of Internet-specific or
congestion-specific loss patterns, for example burst losses, since TFRC’s loss
interval approximation algorithms should be robust to such patterns.

The incoming interface of the router uses a 50 packet-long FIFO drop-tail
buffer; for the multiple-connection experiments the buffer is bandwidth limited
in order to cause apparent congestion.

The sender and the receiver track all codec frames. The sender logs all
frames considered for sending before the send system call. The receiver logs all
incoming frames after the completion of the recv system call. Further logging is
performed by the router on the incoming and outgoing interfaces, using libpcap.

The current chapter presented the experimental setup and the metrics in-
volved in the quality evaluations. The chapter gave a description of the conver-
sation model used for generating speech patterns, followed by the presentation
of the metric used in evaluating the way in which packet transmission reflects
in voice quality. It presented an algorithm for bounding the performance of
playout buffers, adapted for fitting the quality estimation requirements. In the
end it introduced the experimental setup used.

Chapter 5

Experimental Results

This chapter presents the experimental results obtained and gives a discussion
of DCCP’s behavior in comparison to UDP and TCP.

5.1 Results

In contrast to TCP applications, UDP applications do not use a socket buffer in
order to regulate the flow of data sent through the network, as packets written
tend to be sent out immediately. For interactive applications the usage of a
send buffer is unusual; however, for congestion control capable protocols, the
application might prefer delaying the packets for small amounts of time instead
of dropping them due to the momentary impossibility to send. Especially for
applications that vary the rate of the data transmitted through the network
by adjusting the packet size or stopping transmission frequently, such provi-
sions might help in avoiding unnecessary packet loss during the time needed for
probing for available bandwidth.

The KAME implementation has been modified during the project in order to
allow the usage of a send buffer of configurable size. For the current experiments,
the buffer size was set to a maximum of five packets, causing a maximal delay
of 100 ms in the case of a 20 ms sampling rate.

The different DCCP congestion control modes have been compared to UDP,
TCP using an increased initial window as specified in RFC 3390 [36] and TCP
using the smaller initial window specified in RFC 2581 [11]. For the TCP
transmission the TCP NODELAY socket option was used in order to disable
Nagle’s algorithm for concatenating small buffer messages [9].

The following notations are used in the quality plots:

• UDP: The UDP Protocol

• TCP: The TCP Protocol, with the modification described in RFC 3390
enabled

• TFRC: TCP friendly rate control

• TFRC SP: TFRC small packets variant

• TFRC SP FR: TFRC small packets variant, with faster restart

34

• TFRC SP FR MD: TFRC small packets variant, with faster restart,
modified in order to never decrease the sending rate below eight small
packets per RTT; the minimal sending rate is computed as 8(s+H)

R where s
is the average packet size, H is the packet header size, defaulted according
to [18] to 40 bytes, and R is the RTT estimate.

Varying Delay

The first series of experiments varied the one-way delay of the connection be-
tween 25 and 400 msec. Due to the absence of losses, in this series of exper-
iments, TFRC works only in the slowstart mode. For this reason, the faster
restart variant of TFRC for small packets does not show a more aggressive re-
sponse function than TFRC for small packets , since both variants specify that
the transmission rate can at most double during one RTT in the slow start
period.

The sending rate after periods of idleness was found to suffer due to a desyn-
chronization between the idleness detection mechanism and the feedback mech-
anism, which reports the received rate X recv. The reasons leading to this effect
are discussed in the Section 5.2. We note that the TFRC SP FR MD version
was not allowed to decrease the transmission rate under eight packets per RTT,
despite the reported X recv rate.

The effects can be observed in the Figures 5.1 a), 5.1 b) and 5.1 c), which
show a sharp decrease of the quality score once the delay increases. The decrease
is due to the large number of RTTs necessary for reaching the nominal send rate.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC SP

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC SP FR

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC SP FR MD

Figure 5.1: Quality plot - G729 - TFRC, TFRC SP, TFRC SP FR and TFRC
SP FR MD under varying delay, median and quartiles illustrated

The only factor affecting the transmission is the above mentioned desynchro-
nization between the idleness detection mechanism and the feedback mechanism
causing a very low initial transfer rate after a period of feedback.

For TFRC for Small Packets, the limitation of the initial sending rate X recv
prevents the protocol from taking advantage of the change in the calculated

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC SP

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC SP FR

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400
R

 s
co

re

delay(ms)

UDP
TCP

TFRC SP FR MD

Figure 5.2: Quality plot - G711 - TFRC, TFRC SP, TFRC SP FR and TFRC
SP FR MD under varying delay, median and quartiles illustrated

transmission rate. The achieved performance in this case is therefore similar to
the one of TFRC.

Since the TFRC protocol under varying delay and no loss functions only
in slowstart mode, the rate control of the faster restart variant of TFRC SP
(Figure 5.1 c)) is identical in this case to the one of TFRC SP.

By allowing a transfer rate of eight packets per RTT at all times, TFRC
SP FR MD (Figure 5.1 d)) allows a more free traffic dynamic, resulting in a
less pronounced quality loss. Due to the low bandwidth of the codec, and to
the fact that TCP uses a large initial window, the achieved performance is still
inferior to the one of TCP. A quantitative analysis of the causes is given in the
experiment discussion.

In the case of a higher bandwidth (Figure 5.3) the performance of all TFRC
versions stays below the one of TCP, and is similar to the one in the previously
analyzed case. The graphs illustrate that in this case, due to the fact that the
initial congestion window is below the codec’s nominal rate, TCP’s performance
is below the one of UDP.

Varying Delay and the Congestion Avoidance Mode

The following series of experiments revolves around the effects of TFRC’s con-
gestion avoidance mode on connections experiencing different delay conditions.
In order to determine the switch from slowstart to congestion avoidance, a loss
rate of 1/1000 packets is employed on the line. The loss rate has minimal effects
on the perceived quality, but ensures that TFRC will function in the congestion
avoidance mode for most of the connection time.

The effects can be observed in the Figures 5.3 a), 5.3 b), 5.3 c) and 5.3 d).
The regular TFRC variant (Figure 5.1 a)), described in RFC 3448 [17] shows

a strong impact of rate control upon the VoIP traffic dynamic, causing a sharp
decrease due to higher delay.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC SP

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC SP FR

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC SP FR MD

Figure 5.3: Quality plot - G729 - TFRC, TFRC SP, TFRC SP FR and TFRC
SP FR MD under varying delay and small loss, median and quartiles illustrated

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC SP

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC SP FR

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
 s

co
re

delay(ms)

UDP
TCP

TFRC SP FR MD

Figure 5.4: Quality plot - G711 - TFRC, TFRC SP, TFRC SP FR and TFRC
SP FR MD under varying delay and small loss, median and quartiles illustrated

It is clear that plain TFRC is incapable of reaching the desired level of qual-
ity. The reason is that the rate equation of TFRC uses the actual packet size of
the voice packets transmitted in deciding the maximal rate X calc achievable by
the protocol, while the TCP equation model on which the TFRC rate equation
is based assumes that the packet size is equal to the maximum segment size.
The resulting rate proves to be too constraining for allowing the transmission
of VoIP traffic.

In the congestion avoidance mode TFRC’s rate control (Figure 5.3 a)) is too
constraining for allowing proper transmission. The cause is the low initial rate
after periods of idleness, resulting from the reported X recv value.

TFRC for Small Packets (Figure 5.1 b)) increases the equation computed
sending rate X calc by allowing the same transmit rate as the one of a TCP
stream using 1500 bytes-long segments.

In the same mode, the TFRC SP variant (Figure 5.3 b)) suffers equally due
to the low reported receive rate. The more permissive X calc rate seems to have
no impact on the quality of transmission, although it is higher than the codec’s
nominal transfer rate. The main factor leading to the quality degradation is the
high number of RTTs required to reach the nominal rate after idleness, causing
both delays and losses.

The faster restart variant of TFRC SP (Figure 5.3 c)) now has the possibility
of quadrupling its transmission rate during one RTT, and thereby achieving
superior performance. The performance gain is clearly visible when comparing
to the slowstart mode variant (Figure 5.1). However, this advantage is only
present in the congestion avoidance mode, and the transition from slowstart to
congestion avoidance only occurs after the first loss event. In order for the voice
traffic to be able to take advantage of the more liberal rate control offered by
the faster restart version in all conditions (including the absence of losses), it
would seem appropriate to modify the rate control algorithm for allowing the
quadrupling of the transmission rate in the slowstart mode.

TFRC SP FR MD (Figure 5.3 d)) achieves a performance similar to the one
of TCP. It can be inferred by comparing the quality impact illustrated in figures
5.3 d) and 5.1 d) that by allowing the quadrupling of the transfer rate also in the
slowstart period (constituting the beginning of the conversation), the modified
variant would be able to achieve an even better performance.

In the case of a higher bandwidth (Figure 5.3) the performance of all TFRC
versions stays again below the one of TCP. Due to the faster rise of the trans-
mission rate after talkspurt start, TFRC SP FR MD achieves a performance
closer to the one of TCP.

Varying Loss

The loss experiments vary the loss factor on a logarithmical scale from 1/10000
up to 1/100 packets and a constant 50ms delay.

The interesting point of these experiments is the way in which DCCP’s non-
reliable transmission compares to TCP for which retransmission of lost packets
is necessary. The second behavior to be observed is the way in which DCCP’s
rate adjustment due to measured loss affects VoIP transmission.

TFRC’s rate (Figure 5.5 a)) is mainly affected by the reported receive rate
X recv. The final drop in quality occurs due to the computed rate X calc.

 0

 20

 40

 60

 80

 100

 1e-04 0.001 0.01 0.1

R
 s

co
re

loss ratio

UDP
TCP

TFRC

 0

 20

 40

 60

 80

 100

 1e-04 0.001 0.01 0.1

R
 s

co
re

loss ratio

UDP
TCP

TFRC SP

 0

 20

 40

 60

 80

 100

 1e-04 0.001 0.01 0.1

R
 s

co
re

loss ratio

UDP
TCP

TFRC SP FR

 0

 20

 40

 60

 80

 100

 1e-04 0.001 0.01 0.1

R
 s

co
re

loss ratio

UDP
TCP

TFRC SP FR MD

Figure 5.5: Quality plot - G729 - TFRC, TFRC SP, TFRC SP FR and TFRC
SP FR MD under varying loss and 50ms delay, median and quartiles illustrated

 0

 20

 40

 60

 80

 100

 1e-04 0.001 0.01 0.1

R
 s

co
re

loss ratio

UDP
TCP

TFRC

 0

 20

 40

 60

 80

 100

 1e-04 0.001 0.01 0.1

R
 s

co
re

loss ratio

UDP
TCP

TFRC SP

 0

 20

 40

 60

 80

 100

 1e-04 0.001 0.01 0.1

R
 s

co
re

loss ratio

UDP
TCP

TFRC SP FR

 0

 20

 40

 60

 80

 100

 1e-04 0.001 0.01 0.1

R
 s

co
re

loss ratio

UDP
TCP

TFRC SP FR MD

Figure 5.6: Quality plot - G711 - TFRC, TFRC SP, TFRC SP FR and TFRC
SP FR MD under varying loss and 50ms delay, median and quartiles illustrated

TFRC SP’s rate (Figure 5.5 b)) shows a similar behavior. However, the
computed rate X calc remains high even at higher loss rates and does not become
a limiting factor.

In the case of the TFRC SP FR variants (Figures 5.5 c) and 5.5 d)) it can
be noticed that the higher loss rate, by triggering an earlier transition from the
slowstart mode to the less restrictive congestion avoidance mode, has a positive
effect on the transmission quality.

As higher loss rates occur, TCP quality decreases due to the higher average
delay incurred through packet retransmission. Although our experiments use a
TCP SACK-enabled version, if the playout buffer decides to hold the retrans-
mitted packet despite the occurring RTT delay, the whole sequence of packets
in the same talkspurt will be delayed. Further complications might appear due
to the arbitrary segmentation of voice data frames in the stream socket.

At a delay of 50ms, TFRC SP FR MD (Figure 5.5 d)) achieves a performance
very similar to the one of UDP, and proves DCCP’s advantage over TCP’s
guaranteed transmission schema in the case of interactive multimedia traffic.

In the case of a higher bandwidth (Figure 5.3) the effect observed are very
similar. TFRC SP FR MD manages to overcome TCP and achieve a perfor-
mance similar to the one of UDP, partly due to the absence of a retransmission
mechanism.

In order to gain a better understanding of the effects of the rate limitation
through the reported X recv rate, several talkspurt periods are plotted in the
Figure 5.7 for the TFRC SP FR variant.

The first subgraph shows the speech on/off pattern which serves as an input
to the codec. The second subgraph presents a trace of the packets sent, of
the packets received and for the packets played out it indicates the play out
time. The third subgraph plots the send rate, recorded by the sender machine
upon each run of the rate adjustment algorithm. The fourth subgraph presents
the occupancy level of the sender buffer (which varies from one to five packets),
recorded also by the sender machine upon each call of the dccp output() function
in the DCCP stack. The fifth subgraph plots the sizes of the transmitted packets
at the input and the output interfaces, as extracted from the tcpdump traces of
the router’s incoming and outgoing interfaces. The last subgraph presents the
quality impairments due to delay and to loss, computed over short time periods.
The delay impairment is individual to each packet (while all packets in the same
talkspurt are played with the same end-to-end delay) while the loss impairment
is determined by computing a running average over 100 packets.

Figure 5.8 shows the same measurements in the case of the TFRC SP FR
MD variant. The congestion effects present before have decreased, bringing a
significant quality improvement.

Multiple Connections

The multiple connection experiments try to evaluate the relative fairness of
simultaneously competing voice flows sharing a bottlenecked line.

The current chapter presented the experimental results obtained and gives
a discussion of DCCP’s behavior in comparison to UDP and TCP.

 0

 1

 120 125 130 135 140 145 150

on
/o

ff

time(s)

Speech pattern

 6000

 7000

 8000

 120 125 130 135 140 145 150

se
q

no
.

time(s)

tsend
trecv
tplay

 20000

 40000

 120 125 130 135 140 145 150

ra
te

 (
bp

s)

time(s)

send rate (DCCP)

 5

 120 125 130 135 140 145 150

bu
ffe

re
d

pa
ck

et
s

time(s)

packets in buffer

 50

 75

 120 125 130 135 140 145 150

pa
ck

et
 s

iz
e

at
 th

e
ro

ut
er

 (
by

te
s)

time(s)

input if

 50

 75

 120 125 130 135 140 145 150

pa
ck

et
 s

iz
e

at
 th

e
ro

ut
er

 (
by

te
s)

time(s)

output if

 120 125 130 135 140 145 150R
 s

co
re

 d
ep

re
ci

at
io

n

time(s)

Id
Ie

Figure 5.7: Single connection - G729, TFRC SP FR, send buffer of 5 packets,
loss rate 1/1000, delay 150 ms

 0

 1

 120 125 130 135 140 145 150

on
/o

ff

time(s)

Speech pattern

 6000

 7000

 8000

 120 125 130 135 140 145 150

se
q

no
.

time(s)

tsend
trecv
tplay

 20000

 40000

 120 125 130 135 140 145 150

ra
te

 (
bp

s)

time(s)

send rate (DCCP)

 5

 120 125 130 135 140 145 150

bu
ffe

re
d

pa
ck

et
s

time(s)

packets in buffer

 50

 75

 120 125 130 135 140 145 150

pa
ck

et
 s

iz
e

at
 th

e
ro

ut
er

 (
by

te
s)

time(s)

input if

 50

 75

 120 125 130 135 140 145 150

pa
ck

et
 s

iz
e

at
 th

e
ro

ut
er

 (
by

te
s)

time(s)

output if

 120 125 130 135 140 145 150R
 s

co
re

 d
ep

re
ci

at
io

n

time(s)

Id
Ie

Figure 5.8: Single connection - G729, TFRC SP FR MD, send buffer of 5
packets, loss rate 1/1000, delay 150 ms

 0

 20

 40

 60

 80

 100

 120 140 160 180 200 220 240

R
 s

co
re

bottleneck bandwidth(kbps)

12 sources, 50 packets inbound limitation

UDP
TFRC

TFRC SP
TCP

Figure 5.9: Multiple connections, G729

5.2 Discussion

The experiments presented in the previous section have evaluated the perfor-
mance of the various variants of the TFRC protocol in transporting voice traffic,
comparing it to the performance achieved by UDP and TCP.

The performance of all variants of TFRC was found to suffer because of a
desynchronization between the idleness detection mechanism and the feedback
mechanism. In order to estimate the actual impact that the small receive rate
reported has on the quality of transmission, a different variant of TFRC for
small packets with faster restart, that never allows the transmission rate to
drop below eight packets per RTT, was tested.

In the slowstart period, the initial rates after periods of idleness are s/R
for TFRC, TFRC SP and TFRC SP FR. However, this rate is practically not
achieved due to the rate limitation brought by the reported receive rate X Recv.
More specifically, the feedback mechanism specified by CCID 3 [8] relies on
window counters marking the data packets. The counters have values between 1
and 16, and the counter value of the sent packets is increased four times per RTT.
The receiver will send a feedback packet whenever it receives a packet marked
with a counter value exceeding by at least four the counter value of the last
received packet, as measured in the cyclic number space of the window counters.
Therefore, during standard operation (frequent arrival of data packets), the
receiver sends a feedback packet about once per RTT.

Each feedback packet contains the reported value of X recv, computed by di-
viding the number of bytes received since sending the previous feedback packet
by the time elapsed since the previous feedback send event. After a period
of idleness, one of the first data packets will determine the receiver to report
a receive rate obtained by dividing the number of bytes corresponding to the
payload of only a few packets, divided by the entire length of the idleness in-
terval. Although RFC 3448 [17] specifies that the sending rate should never be
decreased under four packets per RTT during a period of idleness, this provision

does not enter into effect because the feedback packet has been received as a
response to a data packet, once the period of idleness has ceased.

The effects can be observed in the Figures 5.1 a), 5.1 b) and 5.1 c), which
show a sharp decrease of the quality score once the delay increases. The decrease
is due to the large number of RTTs necessary for reaching the nominal send rate.

RFC 2581 [11] specifies a minimal window for a TCP connection exiting an
idleness period of:

IW = 2 ∗ SMSS

while RFC 3390 [36] increases this value to

IW = min(4 ∗ SMSS, max(2 ∗ SMSS, 4380bytes))

where SMSS stands for the sender’s maximum segment size.
Because the MSS values, either discovered by applying the path MTU algo-

rithm or set by vendors at a “safe” value of 1500 bytes, are considerable larger
than the size of typical voice packets, and taking into account that, opposed to
TFRC SP and its variants, TCP does not take into account the packet header
size in computing the transmission rate, it can be deduced that initial send rate
of TCP is larger by around one order of magnitude than the one of TFRC SP
FR MD.

Assuming a time interval of tc seconds between the frames generated, a
frame payload of s bytes, a packet header size H and an initial rate X0, the
TFRC with faster restart sender acting in congestion avoidance mode will need
about log4

(s+H)
tc·X0

RTTs in order to reach the nominal send rate, after a period
of idleness. Depending on the buffer size, delays or losses will occur, causing
the quality degradation seen in the graphs of the previous section.

The modified version of TFRC with faster restart uses a minimal sending
rate of eight small packets every RTT. For comparison, RFC 3390 [36] specifies
that a TCP connection allows an initial rate of at most four maximal segment
sizes per RTT for a connection restarting after idleness. The initial rate in the
case of TCP is larger by an order of magnitude than the one of TFRC. The
experiments using the G729 codec clearly demonstrate the advantage that TCP
has over the TFRC SP FR modified variant in this case.

The last possible source of problems found was the method used for the
calculation of the length of the first loss interval while passing from the slowstart
mode to the TFRC congestion avoidance mode. The computed loss interval is
based by the rate observed during the last RTT before the loss event occurs. For
VoIP traffic, presenting frequent periods of idleness, the rate observed might be
significantly under the actual desired rate of transmission leading to a higher
apparent loss rate and an artificial rate limitation.

Simultaneous DCCP traffic flows sharing a bottlenecked link were found to
be relatively fair to each other. No starvation effects have been observed.

A possible solution for dealing with the slowstart behavior after idleness is
to send data at a rate representing a fraction of the nominal codec rate dur-
ing periods of silence. While this solution solves some of the shortcomings of
the protocol, as demonstrated by a series of test performed, it is impractical in
certain scenarios where the ratio of voice activity duration compared to voice
inactivity is quite low (for example audio conferences between more than two
participants). Moreover, due to the fact that the packet payload for VoIP pack-

ets is comparable to the header size, the actual bandwidth economy becomes
minimal.

By comparing the results obtained for the G729 and G711 codecs it has
been observed that DCCP scales better than TCP to codecs using higher band-
widths. This finding is valid as long as the packet payload does not exceed the
maximum segment size, which is the typical case for voice applications, and is a
consequence of the fact that TFRC SP’s send rate during slowstart, computed
in number of packets over a time interval, is independent of the packet pay-
load. The second necessary condition is that the equation-derived rate X calc,
expressed in bytes, has to be above the codec’s nominal rate.

Chapter 6

Conclusion

The current chapter summarizes the work presented and indicates some possible
future research themes relating to the quality of VoIP transmission over DCCP.

The focus of the current work has been congestion control for interactive
media. We considered the problem of testing the quality of VoIP traffic trans-
ported over the DCCP protocol, using some of the different proposed variants of
congestion control methods. The evaluation framework developed can be used
in estimating the quality implications of any transport-level congestion control
schema proposed for the DCCP protocol. By applying the evaluation technique
to the currently proposed congestion control mechanisms, we were capable of
exploring some of their existing limitations. We tried to show the ways in which
congestion control interacts with the dynamic of interactive traffic.

The experimental results have indicated a desynchronization between the
idleness detection mechanism and the feedback mechanism which reports the
received rate, affecting the restart after periods of idleness.

Experiments have also shown that TFRC’s method of setting the initial win-
dow after connection restart affects the way in which voice connections restart,
depending on the connection delay. We have compared the different TFRC
variants with TCP in order to asses their impact on different codecs.

The last possible source of problems found was the method used for the
calculation of the length of the first loss interval while passing from the slowstart
mode to the TFRC congestion avoidance mode.

The effect of different delay and loss conditions in combination with the
TFRC traffic congestion methods has been evaluated.

We believe that the current work brings forward some of the issues and con-
straints present in designing congestion control schemes for interactive media.

In the following a number of questions appearing during our investigations
are presented. For gaining a complete understanding of the way in which data
and voice flows can coexist in best-effort networks, further investigation of the
following topics is required:

The possibility of using optimized send buffers for trying to improve the
perceived voice quality has been mentioned already. To this point there are a
number of possible implementation options, ranging from a modified send buffer

46

that drops the older packets in order to accommodate new ones, to buffers using
packet priorities in order to make informed drop decisions and the packet-buffers
described by Kohler and Padhye. The choice between mechanisms affects not
only the application-level interface of the protocol, but also the complexity of
the encoder-sender package. More advanced applications could use quality-
assessment techniques in order to optimize their output for facing network con-
gestion.

The paper [37] mentions that applications that fail to use their TFRC-
allocated sending rate might encounter starvation when competing with TCP
traffic in a FIFO queue. Since voice codecs have, in general, limited bandwidth
usage, and do not aggressively probe for extra bandwidth, they are particular
prone to suffer from this form of starvation.

The experiments have shown that adding one or two competing TCP streams
to a pool of UDP or DCCP voice streams using a low bandwidth codec causes
a drastic reduction in the voice quality.

There are different methods for dealing with the above-mentioned problem.
Using adaptive codecs, an application can both offer the best quality allowed by
the available bandwidth and prevent starvation due to a lack of aggressiveness
in bandwidth usage. Applications might have to accept that competing TCP
streams might cause packet loss at high levels, and use supplementary band-
width for protecting their data payload through some form of redundancy such
as FEC (forward error correction). Other strategies are based on queue man-
agement methods for routers which try to limit the delay of in-flight packets,
such as RED. It is possible that these management strategies will have to be
revised in order to be able to cope with the limited size of voice packets.

ECN can provide a dramatic improvement in the quality of multimedia trans-
mission, by eliminating packet loss as a prerequisite of congestion recognition.
Since voice stream quality is drastically affected even by small amounts of losses,
and ECN can signal congestion build-up to both multimedia and data streams,
sharing a link for both voice and data transfers while avoiding flow starvation
and unnecessary delays becomes possible.

The last two methods mentioned require extensive deployment by service
providers. The possibility of being able to mix data and multimedia traffic at
the transport layer is a certain incentive for their widespread adoption.

Bibliography

[1] S. Floyd and J. Kempf, “IAB Concerns Regarding Congestion Control for
Voice Traffic in the Internet,” RFC 3714 (Informational), Mar. 2004.

[2] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control Pro-
tocol (DCCP),” 2005.

[3] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit Con-
gestion Notification (ECN) to IP,” RFC 3168 (Proposed Standard), Sept.
2001.

[4] N. Spring, D. Wetherall, and D. Ely, “Robust Explicit Congestion Noti-
fication (ECN) Signaling with Nonces,” RFC 3540 (Experimental), June
2003.

[5] E. Kohler, M. Handley, and S. Floyd, “Designing DCCP: Congestion con-
trol without reliability,” 2003.

[6] “Dccp state diagram image,” 2006. [Online]. Available:
http://portal.miun.se/ necu9500/dccp/start.html

[7] S. Floyd and E. Kohler, “Profile for Datagram Congestion Control Protocol
(DCCP) Congestion Control ID 2: TCP-like Congestion Control,” RFC
4341 (Proposed Standard), Mar. 2006.

[8] S. Floyd, E. Kohler, and J. Padhye, “Profile for Datagram Congestion
Control Protocol (DCCP) Congestion Control ID 3: TCP-Friendly Rate
Control (TFRC),” RFC 4342 (Proposed Standard), Mar. 2006.

[9] J. Nagle, “Congestion control in IP/TCP internetworks,” RFC 896, Jan.
1984.

[10] V. Jacobson and M. J. Karels, “Congestion avoidance and control,” ACM
Computer Communication Review; Proceedings of the Sigcomm ’88 Sym-
posium in Stanford, CA, August, 1988, vol. 18, 4, pp. 314–329, 1988.

[11] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control ,” RFC
2581 (Proposed Standard), Apr. 1999, updated by RFC 3390.

[12] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,
V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan,
S. Shenker, J. Wroclawski, and L. Zhang, “Recommendations on Queue
Management and Congestion Avoidance in the Internet,” RFC 2309 (In-
formational), Apr. 1998.

48

[13] W. Almesberger, J. Salim, A. Kuznetsov, and D. Knuth, “Differentiated
services on linux,” 1999.

[14] J. Padhye, “Model-based approach to TCP-friendly congestion control,”
Ph.D. dissertation, University of Massachussetts Amherst, 2000.

[15] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP
Reno performance: a simple model and its empirical validation,” IEEE/
ACM Transactions on Networking, vol. 8, no. 2, pp. 133–145, 2000.

[16] P. Sarolahti and A. Kuznetsov, “Congestion control in linux tcp,” 2002.

[17] M. Handley, S. Floyd, J. Padhye, and J. Widmer, “TCP Friendly Rate
Control (TFRC): Protocol Specification,” RFC 3448 (Proposed Standard),
Jan. 2003.

[18] S. Floyd and E. Kohler, “TCP Friendly Rate Control (TFRC): the Small-
Packet(SP) Variant ,” 2006.

[19] E. Kohler and S. Floyd, “Faster Restart for TCP Friendly Rate Control
(TFRC),” 2005.

[20] N. E. M. Magnus Erixzon, Joacim Haggimark, “Implementing DCCP De-
sign Specification,” 2003.

[21] J. Lai and E. Kohler, “A Congestion-Controlled Unreliable Datagram API,”
2004.

[22] T. Phelan, “Strategies for Streaming Media Applications Using TCP-
Friendly Rate Control,” 2005.

[23] S. B. Moon, J. Kurose, and D. Towsley, “Packet audio playout delay ad-
justment: performance bounds and algorithms,” Multimedia Syst., vol. 6,
no. 1, pp. 17–28, 1998.

[24] Anthony W. Rix, Michael P.Hollier, Andries P. Hekstra, John G. Beerends,
“Perceptual Evaluation of Speech Quality (PESQ) The New ITU Standard
for End-to-End Speech Quality Assessment.”

[25] A. W. Rix, M. P.Hollier, A. P. Hekstra, and J. G. Beerends, “Perceptual
Evaluation of Speech Quality (PESQ) The New ITU Standard for End-to-
End Speech Quality Assessment. Part I – Time-Delay Compensation.”

[26] ——, “Perceptual Evaluation of Speech Quality (PESQ). The New
ITU Standard for End-to-End Speech Quality Assessment Part II–
Psychoacoustic Model.”

[27] ITU, “Recommendation G.107. E-model, a computational model for use in
transmission planning.”

[28] R. G. Cole and J. H. Rosenbluth, “Voice over ip performance monitoring,”
SIGCOMM Comput. Commun. Rev., vol. 31, no. 2, pp. 9–24, 2001.

[29] L. Ding and R. A. Goubran, “Speech Quality Prediction in VoIP Using the
Extended E-Model,” GLOBECOM IEEE Global Communications Confer-
ence, vol. 7, pp. 3974–3978, 2003.

[30] A. W. Christian Hoene, Sven Wiethoelter, “Calculation of Speech Quality
by Aggregating the Impacts of Individual Frame Losses,” Proc. of Thir-
teen International Workshop on Quality of Service (IWQoS 2005), Passau,
2005.

[31] K. Sriram and W. Whitt, “Characterizing superposition arrival processes
and the performance of multiplexers for voice and data,” in Proceedings
of IEEE Global Telecommunications Conference, New Orleans, December
1985, 1985.

[32] D. Cohen, “Issues in transnet packetized voice communication,” in SIG-
COMM ’77: Proceedings of the fifth symposium on Data communications.
New York, NY, USA: ACM Press, 1977, pp. 6.10–6.13.

[33] R. Ramjee, J. F. Kurose, D. F. Towsley, and H. Schulzrinne, “Adaptive
playout mechanisms for packetized audio applications in wide-area net-
works,” in INFOCOM (2), 1994, pp. 680–688.

[34] S. Tao, K. Xu, A. Estepa, T. Fei, L. Gao, R. Guerin, J. Kurose, D. Towsley,
and Z. Zhang, “Improving voip quality through path switching,” in Pro-
ceedings of IEEE Infocom, 2005, 2005.

[35] L. Rizzo, “Dummynet: a simple approach to the evaluation of network
protocols,” ACM Computer Communication Review, vol. 27, no. 1, pp.
31–41, 1997.

[36] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s Initial Window,”
RFC 3390 (Proposed Standard), Oct. 2002.

[37] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based con-
gestion control for unicast applications,” in SIGCOMM 2000, Stockholm,
Sweden, August 2000, pp. 43–56.

