
 1

Abstract— This paper describes the deployment of a global

Internet overlay testbed to support distributed, shared use of
resources for network research. The Global X-Bone (GX-Bone)
augments the X-Bone software system, enhancing its
coordination mechanisms to support deployment of local overlays
to world-wide, shared infrastructure. The testbed is based on the
X-Bone’s Virtual Internet Architecture, which extends the
Internet for both concurrent, parallel and recursive overlays, and
provides decentralized, automated deployment and management.
The global testbed supports host virtualization through the
NetFS file system, granting individual users compartmentalized
access and control of host and router configuration, and the
DataRouter extension to IP loose source routing that supports
application control of network-layer forwarding. GX-Bone can
be installed on user-modified kernels, uniquely supporting both
conventional kernel-level protocol development and coordinated
sharing of global infrastructure.

Index Terms—Overlays, virtual Internets, virtual networks,
network testbeds, network management

I. INTRODUCTION
HE X-Bone is a system for deploying and managing
Internet overlays [17][20]. It coordinates the configuration

and management of virtual networks, enabling shared use of
network resources (Figure 1). The Global X-Bone extends the
X-Bone implementation from a stand-alone software system
for local experiments to a global infrastructure for wide-scale
network research.
 Overlays can be used for isolation, concurrency, and
abstraction. They protect traffic, allowing new protocols to be
tested, and were originally used to protect multicast IP
addresses from leaking onto the conventional Internet.
Overlays isolate different protocols, such as was used to
deploy IPv6 incrementally over the current IPv4 Internet.
Overlays also allow network components to be shared,
supporting network concurrency akin to multiprocessing. This
allows concurrent network experiments to share core
infrastructure, as the 6-Bone and M-Bone currently do.
Finally, overlays provide abstraction of topology, allowing
experiments with routing protocols on rings, where, e.g., the
physical topology is a star, a ring, or of arbitrary design. This

Manuscript received October 12, 2004. This work was partly supported by
the NSF STI-XTEND (ANI-0230789) and NETFS (ANI-0129689) projects.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

The authors, excepting L. Eggert, are all with USC/Information Sciences
Institute (ISI), 4676 Admiralty Way, Marina del Rey, CA, 90292-6695, USA.
L. Eggert is with NEC Europe Ltd., Network Laboratories, Kurfürstenanlage
36, 69115 Heidelberg, Germany. (corresponding author J. Touch, phone: +1
(310) 448-9151; fax +1 (310) 448-9300; e-mail: touch@ isi.edu).

allows the network topology to reflect forwarding decisions,
as is done with peer-to-peer architectures, e.g., based on
hypercubes or Plaxton trees [16].

Figure 1 : Multiple virtual Internets

The X-Bone applies a general architecture for network
virtualization to the Internet [20][22]. This architecture
supports concurrence, recursion and revisitation. Concurrence
allows deployment of multiple, parallel concurrent overlays.
Recursion enables deployment of overlays inside other
overlays. Revisitation enables reuse of the same node in a
single overlay more than once. The core set of capabilities has
been implemented as a software system that allows
programmatic deployment of overlays through an XML
interface; a web interface for user-directed deployment is also
available.

The X-Bone code has been available since 2000 as both a
FreeBSD port and a Linux RPM. It has been used in numerous
individual deployments to support overlay and application
experiments and the development of advanced virtual
networking architectures. Although the X-Bone architecture
already supports global resource discovery, each of these
installations has operated largely independently. This remains
a key feature of the X-Bone system – each installation may
remain completely decentralized in both management and
operation. No global coordination is required.

An X-Bone overlay contains both named and unnamed
resources. The current X-Bone uses an expanding ring
multicast search to discover unnamed resources. Named
resources must be specified by IP address or DNS name.
Although this simple mechanism is sufficient for local
testbeds or pre-coordinated global experiments, it does not
easily support a global testbed. On a global scale, it is
inefficient to locate resources using multicast alone. The

A Global X-Bone for Network Experiments
Joseph D. Touch, Yu-Shun Wang, Venkata Pingali, Lars Eggert, Runfang Zhou, and Gregory G. Finn

T

Base Net

Ring VN

Star VN

 2

existing implementation hence did not support the needs of a
global community of X-Bone users that share their resources
to create large-scale, distributed testbeds spanning numerous
administrative domains.

The Global X-Bone, which we call GX-Bone, is an effort to
support this worldwide X-Bone user community in resource
discovery and sharing. It augments the current X-Bone
software with a centralized registry, where members publish
information about resources they are willing to share. Access
control is an integral part of this registry; members may
indicate lists of users with whom they wish to share each
resource.

The remainder of this document presents a brief overview
of the Virtual Internet architecture that is the basis of the X-
Bone, and the X-Bone system itself. It then describes the
extensions that form the Global X-Bone, and the advanced
networking capabilities that are being added to X-Bone nodes
to address deficiencies of other current overlay systems.

II. A VIRTUAL INTERNET
A Virtual Internet (VI) is a virtual version of the Internet.

Just as the Internet is a graph of hosts and routers connected
through links, in a Virtual Internet, virtual hosts and routers
are connected by IP-encapsulation tunneled links over the
existing Internet.

A VI generalizes the tunneled backbones that helped deploy
multicast (M-Bone), IPv6 (6-Bone), and Active Networks (A-
Bone.) These testbeds supported wide-scale networking
research by enabling the testing and incremental deployment
of new protocols on existing infrastructure [1][4][9]. Unlike
those interim solutions, VIs support persistent partial
deployments of new capabilities.

The VI Architecture (VIA) extends the Internet model
composed of data sources and sinks (hosts), data transits
(routers or gateways), and links between them [22]. The VI
virtualizes each of those components, resulting in virtual hosts
(VHs), virtual routers (VRs), and virtual links. The latter are
typically encapsulation tunnels. The VI architecture has three
basic tenets:

TENET 1. Internet-like: VIs are composed of VRs
and VHs connected by encapsulated tunnel links,
emulating the Internet

TENET 2. All-Virtual: VIs are completely virtual,
decoupled from their base network

TENET 3. Recursion-as-router: A VI recurses
when some of its VRs are VI networks (the inner VI
is modeled as a VR)

A number of corollaries follow from these tenets:
Corollary 1-A: Virtual hosts increase or decrease the
number of headers on a packet

Corollary 1-B: Virtual routers do not change the
number of headers on a packet

Corollary 2-A: VIs support concurrence

Corollary 2-B: VIs support revisitation

These tenets and corollaries are the basis of VIA. They
evolved out of analogies between the VIA and
multiprocessing and virtual memory (VM). Like both
multiprocessing and VM, VIA allows multiple parties
concurrent shared, protected use of a single resource in virtual
ways. Like VM, VIA can use a small number of physical
resources (memory page frames, network interfaces,
respectively) to emulate a larger number (memory pages,
virtual interfaces) by revisitation (swapping, known as
revisitation in VIA). All can be layered recursively, and all
provide a simpler, uniform abstract programming interface.

III. THE X-BONE
The X-Bone is a system for the dynamic deployment and

management of Internet overlay networks [17][20][27].
Overlay networks are used to deploy infrastructure on top of
existing networks, to isolate tests of new protocols, partition
capacity, or present an environment with a simplified
topology. Current overlay systems include commercial virtual
private networks (VPNs), and IP tunneled networks (M-Bone,
6-Bone) [1][9]. The X-Bone system provides a high-level
interface where users or applications request DWIM (do what
I mean) deployment, e.g.: create an overlay of 6 routers in a
ring, each with 2 hosts. The X-Bone automatically discovers
available components, configures, and monitors them.

The X-Bone system allows different applications on the
same end host or router to be associated with different overlay
networks. For example, a single generic network mapping
utility on one host might have different views of the network
depending on whether it was attached to the base network or
one of the overlays (Figure 2).

Figure 2 : User’s view of overlays

Some overlay systems require OS and/or application
modifications, restrict the number of overlays a router or host
can participate in, or require manual component configuration.
The X-Bone requires no specific OS or application
modifications and only basic IP in IP encapsulation, and uses
existing implementations of IP services such as dynamic
routing, name service, and other infrastructure. Finally, the X-
Bone virtualizes the current Internet architecture to support
overlays, and supports stacking (recursion) of overlays for
fault tolerance and capacity sub-provisioning for experiments.

star ring

Base

 3

Within each overlay, the X-Bone provides a completely
standard networking interface that includes, for example,
network interfaces, routing tables, and firewalls. Applications
continue to interact with the virtualized versions of these
mechanisms that are part of the overlay abstraction just as they
interact with the regular, physical interfaces. This capability
enables experimentation with advanced networking
applications within a global, virtual network. Furthermore, the
X-Bone supports experimentation with kernel-level
networking modifications.

The X-Bone uses a two-layer tunnel mechanism, rather than
the single layer used in conventional overlays. It is this two-
layer scheme which supports stacked overlays, as well as
permitting use of unmodified applications and network
services inside a deployed overlay. It also permits network
resources (hosts, routers) to participate multiple times in a
single overlay, and is the only known overlay system that
integrates both IPsec support and dynamic routing [18].

A. X-Bone Review
The X-Bone is a distributed system composed of Resource

Daemons (RDs) and Overlay Managers (OMs), with a
graphical user interface (GUI) and a more direct API. These
components are shown in Figure 3. The functions of the RD
and OM have been incorporated into a single daemon, but
operationally they can be discussed as distinct units.

link

web

GUI

RD

host

RD

OM

API

router
Figure 3 : X-Bone architectural components

OMs deploy overlays; a user creates an overlay by sending
a request to an OM, either via a web-based GUI (Figure 4) or
by sending an XML message directly to the OM API. Each
overlay is coordinated by a single OM. Large overlays can be
created by divide-and-conquer, where a single OM will fork
sub-overlay requests to other OMs. Fault tolerance can be
achieved by replicating state in multiple backup OMs. Both of
these latter capabilities (recursion, fault tolerance) are
supported in the X-Bone architecture, though not yet
implemented in current releases.

Figure 4 : X-Bone graphical user interface

An OM creates an overlay in phases, using various
mechanisms to locate the specific resources required for its
construction. These discovery mechanisms include the
existing multicast ring-search (shown in Figure 5), or the new
registry that is part of GX-Bone. The overlay request is
translated to an invitation, and the invitation is transmitted
using UDP. An invitation indicates a set of simple conditions,
e.g., a specific set of host operating systems, bandwidth
requirements, etc. Invitations currently fit in a single UDP
packet; where they do not, IP’s automatic fragmentation and
reassembly is utilized.

RDs are daemons that configure and monitor the resources
of routers and hosts. RDs listen for UDP invitations, and
respond when their capabilities, available resources and
permissions match. The RDs respond with UDP messages,
indicating their willingness to participate in an overlay, and
their capabilities (protocol version, OS type, etc.). The OM
selects a suitable subset from among the responding RDs1, and
opens TCP/SSL connections to each chosen RD. The OM
determines configuration information, such as tunnel endpoint
addresses and routing table entries, and sends specific
configuration information to each RD. Subsequent overlay
actions initiated by the OM include keep-alive pings,
liveliness and status requests, and modifying or dismantling
configurations.

1 An arbitrary selection algorithm again replaces an intractable

optimization that is outside X-Bone’s scope.

 4

TCP/SSL secures the reliable configuration channel only.
The X-Bone supports S/MIME authentication to secure
invitations; responses need not be secured, because they will
be validated by subsequent TCP/SSL connections to the
invited nodes, which will confirm their availability at that time
anyway.

Figure 5 : Responding to invites, selecting, and
configuring the overlay

B. Distributed System Implementation
The X-Bone is a distributed system, where each overlay is

coordinated by one OM, and each OM instructs RDs and
possibly other OMs how to deploy and coordinate an overlay.
A single overlay may be replicated at one or more other
additional OMs, but at any given time, exactly one OM is
managing each given overlay. A single OM usually manages
many overlays.

Users decide which OM manages a given overlay when the
overlay is deployed, by which OM receives the initial request.
Delegated sub-overlays are each managed at exactly one other
OM, and these sub-OMs report back to the primary OM. RDs
execute all local commands.

The X-Bone is implemented in Perl, where the RDs run as
root on local resources (hosts, routers) or on buddy-hosts from
which they issue privileged configuration commands (e.g., for
Cisco routers).

C. GUI/API for Configuration Control
The X-Bone includes two separate APIs, XB_API for

overlay configuration requests and replies (TCP reserved port
2165), and XB_CTL for issuing the generic resource
configuration commands (UDP and TCP reserved privileged
port 265). XB_API uses XML for a web-based front-end, to
enable human-readable overlay requests. This control interface
includes support for user-specified netlists, i.e., network
connectivity lists, to indicate specific topologies. It also
supports a small set of preprogrammed topologies: star, ring,
and line.

XB_CTL issues standardized configuration requests, which
are translated by the RD into local versions, e.g., specific to
the operating system and other node properties.

D. System for Application Deployment
The X-Bone includes a system for scripted application

deployment (Figure 6) [24][25]. A single script is submitted
during a request to deploy an overlay, with parameters
instantiated on a per-overlay and per-node basis. The scripts
accept a set of generic commands (config, start, stop, status)
issued by the OM. These scripts have been used to deploy a

set of web (squid proxy) caches, a set of FreeBSD jails, and to
configure kernel modules for fault-tolerant layered overlays
(DynaBone) [11][19]. The script deployment system is
designed to deploy application-layer code, in the context of
the addresses and DNS names of a particular overlay, on each
node of an overlay in a coordinated fashion, as part of the
automatic deployment system.

Action File

Generator

Script

Application

Generator

Script

ring-
ovl

A

B

D C

RD

(User Input)

Application-Instance

Specific

Parameters

(XBone-Auto)

Overlay/Node-Specific

Parameters:

Ovl Name, IPs,

Topology

RD

RD

Node

Action

File

RD

1

3

2

5

OM

edit

4

6

Figure 6 : Application deployment system

E. Safety & Security
The X-Bone design and implementation focus on security.

The RDs need to run as root to configure interfaces, setup
tunnels, and install IPsec keys; as such, they present a
substantial potential security challenge. Further, distributed
overlay deployment relies on selecting a number of nodes
based on their capabilities; knowing these capabilities can also
present a security hole. Finally, application deployment needs
to be carefully controlled.

The X-Bone uses an X.509 certificate hierarchy together
with TCP/SSL to authenticate and encrypt all communication
[10]. Each RD has its own access control list (ACL), which
provides limits for each resource based on user’s names (via
patterns). Such resources include number of overlays, number
of tunnels, queue limits, bandwidth limits, etc. Further, there
are global resource limits for each node, as well as hard-coded
constraints, which limit overlays to using RFC1918 address
space, e.g.

 5

The X-Bone sends S/MIME authenticated UDP invitations,
and each node decides whether it has the resources indicated,
as well as whether the user named in the request should be
allocated those resources. Nodes respond to invitations only
when they want to participate in the indicated overlay;
otherwise, they can remain silent and anonymous. Some of
this model needs to be relaxed in the GX-Bone, because it is
not globally feasible to send invitations everywhere.

All commands issued by the OM are authenticated based on
the signed key of the OM, and recorded in the RD. Each RD
has its own rollback and recovery mechanism, which allows
RDs to re-install state on reboot, but also dismantles overlay
configuration unless a heartbeat is received from the
appropriate OM that created the corresponding overlay.

Application deployment is controlled by limiting which
functions are run as root. Although the RD uses root
privileges for most configuration operations, application
scripts are run as nobody, or as some preconfigured username.
It is further possible to limit which scripts can be run on which
nodes in the ACL, as well as to limit scripts to a predefined,
preconfigured, signed set of defaults. Further
compartmentalization of access is provided by NetFS [23].

IV. A GLOBAL X-BONE TESTBED
As noted before, the X-Bone to date has been deployed as

stand-alone software, to avoid the need for any centralized
coordination. The X-Bone has already been deployed in a
number of stand-alone testbeds. The first was a combined
USC/ISI-UCL (Univ. College London) testbed in 2000, which
was used for Active Nets demos involving nodes in Marina
del Rey, CA and London, U.K. Other X-Bone systems were
deployed in Ottowa, Canada, Univ. Catalonia, Spain, and
Univ. Kentucky. Note that we do not have a list of all sites
where the X-Bone has been deployed because the system does
not require any central coordination. Although this allows
testbeds to be autonomous and not rely on ongoing USC/ISI
support, it also fails to leverage shared resources when such
sharing is desired.

As a result of our experience with independent deployments
of the X-Bone, we are now preparing a global X-Bone
deployment based on modified software. The new GX-Bone
release includes an option, defaulted to “off”, to join the
global X-Bone testbed. Joining this infrastructure involves
several steps, each discussed in detail below:

1. advertising a node in the GX-Bone registry
2. incorporating a filtered copy of the GX-Bone ACL
3. incorporating a filtered copy of the GX-Bone

certificate authority list
The basic purpose of these three components is,

respectively, to assist with global resource discovery, to
enable global use of shared resources by a known set of users,
and to support distributed authentication at low cost.

There are other capabilities, developed in conjunction with
the X-Bone to support overlay research, which are expected to
be part of the GX-Bone. These include NetFS, a system for
partitioning root permission requirements, and DataRouter, a
string-rewriting routing system which supports application

forwarding at the network layer.

A. The GX-Bone Registry
In order to find nodes that may be anywhere on the globe,

an OM needs to direct its invitations more intelligently than by
multicast advertisement. Although multicast can be used, it is
inefficient when most of the nodes lack the capabilities or
locations desired. The simplest alternative is to have
individual nodes register with a central database, indicating
their willingness to participate in the GX-Bone. This
registration may include any of a node’s properties, but should
include enough information to limit the number of global
invitations the node would receive.

Once registered, there are a number of alternatives that can
be employed to assist OMs in locating desired shareable
resources. The simplest is to have the OM download the
database periodically, or have it pushed when sufficient
changes accumulate, and have each OM scan its local copy
when searching for resources. Note that it is not necessary that
the database be up-to-date, because OMs still send invitations
to RDs, which are need to confirm their willingness to
participate anyway. At worst, errors in the database will result
in wasted invitations sent or available resources not found.

Distributing a copy of the registry has other implications,
however. One of the reasons the X-Bone used an “invite-
reply” protocol is to keep the resources of the local nodes
private. Nodes respond only when they have the desired
resources which can be allocated for the indicated user. Nodes
that want to remain truly private need never make their
presence known except to a limited set of parties. The central
registry violates this principle, because it may contain
sensitive information, such as a node’s OS, patches, etc.

There are two ways to combat this privacy issue. First,
information in the registry need not be complete; the less
specific a node’s description, the more likely it will receive
invitations from other GX-Bone OMs. Those invitations are
not likely to be a source of denial-of-service themselves, and
so can simply be ignored if desired. Second, the registry need
not be downloaded to the OMs; instead, invitations can be
forwarded to the registry as part of a ‘scan’ process. The
registry can respond with a list of potential invitees based not
only on the invitation parameters (OS=Linux,
Testbed=CAIRN, etc.), but also based on the context of the
issuing OM. This variant allows individual nodes to place
some of their configuration information in the trust of the
central registry.

As with any resource location system, the GX-Bone registry
has issues with scalability and performance. Like any
database, it can be implemented in a hierarchical fashion with
delegation along any parameter desired, e.g., by geographic
region, by DNS suffix, by IP prefix, by propagation latency, or
by capability (e.g., IPsec, IPv6, etc.). For the purposes of a
global network testbed, a single central database suffices for
overlay deployment timescales (seconds) and for the numbers
of nodes expected in the near term (tens of thousands).

 6

B. The GX-Bone ACL
The use of a global registry enables resource discovery, but

is insufficient to enable users to utilize nodes that were
unaware of their need. In addition, there needs to be a global
ACL, to indicate what kind of resources are to be shared to the
general public or subsets thereof. The current X-Bone ACL
can already express this sort of default, in the degenerate case,
e.g., where name=“.*”; this is sufficient to allow users who are
not otherwise listed to have resource permissions indicated.

In a global testbed, however, a single, global default is not
always the best. It is safer for users to advertise their general
needs, e.g., 5 virtual interfaces per node, 2 overlays per node,
etc., in advance. These general resource requests are listed in
the GX-Bone ACL. Individual nodes can import any subset of
entries in the GX-Bone ACL, e.g., via filters (import any
where interfaces<5 and where name ends in “.edu”). Users
managing nodes can review these requests, and enable or deny
individual entries in their own ACL as desired.

C. The GX-Bone CA list
The X-Bone relies heavily on the X.509 certificate system,

which presumes that identity is established based on certificate
authorities (CAs) known a-priori. This is similar to web
browsers, which have the CA certs of a known subset of
commercial CAs loaded at compile-time. Browsers allow
override of this list of CAs by two mechanisms: manual
loading of new CA certs, and manual approval of certificates
signed by unknown CAs (typically asking, “This certificate is
signed by an unknown CA; would you like to enable it a)for
this connection, b) for this browser session, or c) forever?”)

Because the X-Bone RDs are completely automatic, and
because the OM may be interacting with a program rather than
by a browser GUI, such manual confirmation is not
appropriate. Instead, the list of CA certs which are used by
nodes joining the GX-Bone is listed in a central database,
which OMs and RDs can load (or load subsets of) as desired.

One alternative would be to preload a set of fixed CAs, as
done with current web browsers, and assume that most X-
Bone deployments have X.509 certificates signed by these
known CAs. Unfortunately, X.509 certificates from these
commercial CAs are often prohibitively expensive for research
testbed use.

V. AUGMENTED KERNEL OPTIONS
The X-Bone makes no specific requirements about the

kernel on which it is deployed; provided the control software
(PERL code) has been ported, any operating system will
suffice. There are porting requirements, e.g., to support
multilayer tunnels, to support IPsec transport mode on virtual
interfaces, etc.; these generic capabilities are already provided
in current versions of FreeBSD and Linux. The X-Bone allows
nodes to be deployed on customized kernels with modified
networking stacks as well.

There are two modifications developed at USC/ISI in
conjunction with the X-Bone system which may be deployed
at GX-Bone nodes, to further enable advanced distributed
network testbed capabilities. DataRouter supports packet

routing based on string matching and rewriting, and is used to
support application-layer forwarding in a network-layer
overlay. NetFS supports partitioned permissions to limit root
access within each overlay.

Neither of these kernel modifications is required for a node
to join the GX-Bone, but each will be indicated in the registry.
These thus represent new capabilities which we hope will
further support virtual network research.

A. DataRouter
The X-Bone was intended to support application-specific

overlays, where the topology of an overlay would be uniquely
matched to a particular application’s requirements. The goal
was to have a single, network-layer system which could
leverage existing protocols while supporting per-application
topologies. This avoids having each application determine
how best to deploy its own overlay.

Peer-to-peer networks have become the counterexample to
this goal. They implement application-specific overlays to
forward requests at the application-layer, based on
application-layer information. They cannot use typical
network-layer overlays, because they require application
control over forwarding rules, and require that the forwarding
mechanism examine application data.

DataRouter augments existing IP loose source routing
(LSR) with string-based routes [21]. Individual next-hops are
still indicated, as with LSR, by IP addresses, but subsequent
hops are indicated by strings in the LSR field (Figure 7).
When reaching a DataRouter LSR router, the string is matched
against a list of patterns, and the matching rewriting rule
applied. The rule also indicates the next-hop IP address, as
with a conventional routing table entry.

Figure 7 : DataRouter LSR as string rewriting

DataRouter has already been applied to moving Chord peer-
to-peer forwarding to the network layer, with a 30x increase in
performance [16]. As importantly, DataRouter-Chord
applications need not implement a new reliable transport
protocol on top of the application layer; it can reuse TCP/IP,
achieving not only higher performance, but also congestion
control compatibility.

B. NetFS
NetFS enables applications inside an individual overlay to

retain control over the configuration of a subset of interfaces,
without running the application as root. It maps local network
resources – interfaces, tunnels, routing tables, IPsec databases,
etc., to a virtual file system much like /proc maps processes to
virtual files (Figure 8).

PT
R

isi.edu SR
C

D1 freebird #55fe
a3

dst. ↔
lookup(freebird)

replace ‘isi’ with usc’
ptr++

#55fe
a3

PT
R

usc.edu SR
C

D2 D1

D1

 7

Figure 8 : NetFS maps network configuration to a

virtual file system

There are two advantages to such a mapping. First, root
permissions can be partitioned, where applications deployed
on one overlay can configure some network parameters but
not others. Second, use of NetFS by applications simplifies
portability; given multiple systems that support NetFS, a
single application can manage network configuration on all
systems.

VI. PRIOR AND RELATED WORK
The X-Bone was developed to automate the effort of tunnel-

based testbeds of the 1990s, notably the M-Bone and 6-Bone
(the “X” in X-Bone is intended to denote a variable). It
provides a more detailed architectural virtualization of the
Internet, inspired by VPNs. It is designed to provide high-
performance, shared network resources for application-
specific use, rather than requiring recapitulation of effort as
with peer networks. The GX-Bone variant is designed to
provide a persistent network research infrastructure in the
spirit of DartNet and CAIRN, but using primarily overlays
rather than dedicated links. GX-Bone is a network version of
distributed, global application testbeds such as the Grid and
PlanetLab.

The X-Bone itself is inspired by the way in which testbeds
evolved in the early 1990s, from dedicated routers and links in
DartNet and CAIRN to tunnel-based overlays in the M-Bone,
6-Bone, and A-Bone [1][4][5][9]. Similar systems were
envisioned earlier, notably MorphNet and SupraNet, in
particular which described overlays at multiple layers in the
protocol stack, or which explored recursion [2][6][7]. The X-
Bone is the first deployment system to bring these
architectural components together in a single, proof-of-
concept implementation.

The X-Bone’s network-layer overlays complement link-
layer testbeds, such as Emulab, and application-layer testbeds
such as PlanetLab [13][26]. Both of these systems are
persistent testbeds of shared components, PlanetLab being the
larger-scale example. GX-Bone builds on PlanetLab’s set of
global resources by deploying network overlays, as well as by
providing coordinated deployment of applications by the X-
Bone’s automated script capability.

GX-Bone is a global testbed that can deploy overlays on-

demand. Other overlay testbeds have been deployed, notably
the M-Bone and 6-Bone, as well as testbeds for specific
research projects, notably the RON testbed [3]. RON
represents a single, static set of overlay tunnels, in effect being
an instance of a single GX-Bone overlay. Other overlay
experiments, such as Detour, and VANs (virtual active
networks), were deployed using tunnels, but did not have a
persistent infrastructure beyond the individual experiment
[12][15].

VII. BENEFITS
The GX-Bone provides a new infrastructure for network

research. It provides a simple, user-level interface to dynamic
overlay deployment. It supports concurrent overlays with
automated resource management, avoiding the need for
1960’s-style pegboard reservation schedules. It supports very
high performance research, and allows the reuse of existing
application, transport, and network layer protocols, as well as
existing applications. It also allows experiments based on the
existing knowledge base of kernel-level modifications,
allowing custom kernels to participate in a global, shared
infrastructure.

A. Ease of use
The X-Bone provides a web-based, do-what-I-mean GUI

for overlay deployment. Resources are used as available,
where nodes support concurrent overlays where possible, and
avoid them (via resource counts, e.g., num_overlays=1) where
necessary. There is no need for a 1960’s style pegboard
reservation system, no need to reserve resources in advance.
The X-Bone brings overlay deployment and use into the realm
of multitasking, a kind of network multitasking operating
system.

This contrasts to previous network testbeds, such as DartNet
and CAIRN, where resources were reserved by calendar
system [5]. It also contrasts to PlanetLab, where ‘slices’ – sets
of vservers deployed on a set of nodes – are deployed a-priori
and left in place [13]. Further, due to how vservers operate, it
is not possible to configure the network interface of a vserver
from within that vserver, and PlanetLab configures the
vservers but does not create tunnels between them. The X-
Bone has already demonstrated ‘slice’ deployment using our
application deployment system, where a simple script –written
in a few hours – was used to deploy a set of vservers
connected by a set of IPsec-encrypted tunnels.

Further, the X-Bone, and GX-Bone as a result, can deploy
overlays emulating different network characteristics, using
dummynet [14]. A deployed overlay can be configured with
additional link latency, link bandwidth limits, link queue
limits, or emulated link losses. Dummynet is only one
example; any system that can be configured from the
command line can configured by the X-Bone’s application
deployment system or incorporated into the core system’s
configuration instructions (X-Bone runs as source), as desired.

B. Performance
The X-Bone has achieved performance of gigabits/second

/net

iface route ipfw proto

fxp0 lo

default alias1 alias2

ether ip

tcp udp

25 26

mask addr

10.0.0.1 default

1 0

addr mask

255.0.0.0

ipsec

10.3.0.0 255.255.0.0

 8

and hundreds of thousands of packets/sec on commodity PC
platforms [19]. It forwards packets in the existing kernel code,
at existing kernel rates. The X-Bone’s RD code configures the
host or router, but otherwise packets are processed by the
conventional, optimized code. The X-Bone software has been
demonstrated to support hundreds of concurrent overlays on a
single, conventional PC, and recursive overlays up to 16 levels
deep.

X-Bone packets are forwarded at IP forwarding rates at
intermediate nodes. At overlay routers, there are additional
encapsulation and decapsulation steps, as well as additional
forwarding steps. With modern processors, the encapsulation
and decapsulation steps are negligible, and the forwarding rate
is limited only by the additional pass through the kernel that
two-layer encapsulation requires. As a result, a single-level
overlay (not recursive) forwards at roughly half the
conventional IP forwarding rate.

This contrasts to the performance of peer-to-peer systems,
which typically ‘forward’ messages at 1/30 the rate of IP
forwarding (5,000 pkts/sec, vs. 150,000 pkts/sec for an
overlay, vs. 300,000 pkts/sec. base IP forwarding on a 2.4Ghz
Xeon PC).

C. Reuse of net and transport protocols
The X-Bone enables network level research without the

need for applications to reinvent transport and other protocols.
DataRouter extends conventional IP forwarding with string
matching and rewriting loose source routing, allowing an
overlay to support peer-to-peer forwarding with network layer
performance. Messages need not be terminated at each hop,
e.g., using hop-by-hop (HBH) RPCs, as is done in Chord; such
HBH behavior at the application layer requires additional
application mechanisms to provide transport protocol
properties, such as reliable, in-order delivery [16].

Further, network layer overlays can reuse existing network
and transport protocol mechanisms, such as dynamic routing
dynamic routing, congestion control, and windowing. This
avoids the need for applications to reinvent – or rediscover –
solutions to these well-known problems.

By using network solutions to these issues, the X-Bone
allows existing applications to operate over deployed overlays.
Existing implementations of FTP, ping, traceroute, web
servers, mail servers, etc. all operate over X-Bone overlays.
This leverages the installed base, and avoids additional effort
and errors of recapitulation.

D. Allows custom kernels to participate
The X-Bone’s design relies on conventional IP packet

forwarding, with common extensions for IP encapsulation,
where the entire X-Bone system is deployed at the application
layer. RDs and OMs configure network interfaces, tunnels,
and routing table entries; packets continue to be forwarded by
existing kernel mechanisms. DataRouter is a good example of
how conventional kernel-based network protocol experiments
can be incorporated into an X-Bone overlay; the X-Bone
system is deployed on a DataRouter kernel [21]. Similar
modifications can be deployed anywhere in the GX-Bone,

flagged by labels which can be used by experimenters to find
appropriate nodes anywhere in the world (e.g., find
“DataRouter” nodes).

VIII. FUTURE WORK
The GX-Bone, like the X-Bone on which it is based,

represents an ongoing effort at USC/ISI to develop and
explore the Virtual Internet Architecture. In addition to the
ongoing development of the GX-Bone system, including its
registries and discovery system, we are working to enable
more complex, layered deployment of large-scale overlays.
Two specific avenues of future work involve support for
partitioned resources and support for inter-overlay gateways.

A. Partitioned resources
The X-Bone currently deploys network-layer overlays,

assuming individual nodes can participate in multiple overlays
without mutual interference at the network layer. NetFS is
designed to avoid the interference of root permissions among
these overlays, but there are other ways in which overlays
compete at shared resources. In particular, it can be
challenging to limit computational resources, disk volumes,
etc. across overlay instances, as current hosts and routers do
not expect to virtualize their resources.

Jail partitions some of these resources, notably disk volume
access, and provides localized root permissions for some
purposes. Unfortunately, jail and its variants (vservers,
VMware, etc.) do not fully support our Virtual Internet
Architecture’s notion of network reentrancy, where wildcards
like INADDR_ANY map only within each partition. These
systems also do not support sets of associated interfaces within
a jail, partitioned from other sets in other jails.

Clonable stacks are a step in the right direction [28].
Although intended to support alternate network stacks, e.g.,
TCP-Reno and TCP-Tahoe, it can be used to support the
associations required for network reentrancy. In particular,
interfaces within a single overlay at virtual router instance are
associated with a weak-host model, and interfaces between
such interfaces are associated by the strong-host model.

Clonable stacks also offer new opportunities to limit the
amount of CPU load allocated to each stack, thus limiting the
computational resource interference of multiple virtual hosts
or virtual routers instantiated on a single node. There remains
substantial work to explore and validate this capability, and to
port it to other systems.

B. Inter-overlay Gateways
The current X-Bone deployment system assumes that

individual overlays are strongly partitioned, avoiding inter-
overlay interaction. This prohibits inter-overlay gateways,
such as would be used to splice together disparate services
running on individual overlays. It is not yet clear what best
architectural extension would support this capability, because
we prefer the Internet model (common communication
framework) to that of concatenating disparate network layers.
One possible option is to explore recursion for this capability,
where each recursive component represents a unique network

 9

architecture, and the overarching “outerlay” (to borrow
terminology from DynaBone) supports the gatewaying
capability [19].

ACKNOWLEDGMENT
The authors thank the numerous contributors to the code

and architecture of the X-Bone project, both within projects of
USC/ISI (X-Bone, DynaBone, NetFS, DataRouter) as well as
in collaboration. These include Steve Hotz, Amy Hughes, Josh
Train, and Nimish Kasat and others at USC/ISI, Peter Kirstein,
Panos Gevros, Manash Lad, Piers O’Hanlon, and others at
UCL in the U.K., and Gregorio Martinez and Manuel Gil
Perez and others at the Univ. Murcia in Spain.

REFERENCES
[1] 6-Bone URL – www.6bone.net

[2] Aiken, R., et. al., “Architecture of the Multi-Modal
Organizational Research and Production Heterogeneous
Network (MORPHnet),” ANL-97/1, Argonne National
Lab, IL., Jan. 1997.

[3] Anderson, D., Balakrishnan, H., Kaashoek, M. F., Morris,
R., “Resilient Overlay Networks,” Proc. 18th ACM
SOSP, Banff, Canada, October 2001.

[4] A-Bone URL – www.isi.edu/abone

[5] CAIRN web pages – www.cairn.net

[6] Campbell, A., et al., “Spawning Networks,” IEEE
Network, July/Aug. 1999, pp. 16-29.

[7] Delgrossi, L., Ferrari, D., “A Virtual Network Service for
Integrated-Services Internetworks,” 7th Int’l Workshop
on Netw. and OS Support for Digital Audio and Video,
May 1997.

[8] DynaBone web pages – www.isi.edu/dynabone

[9] Eriksson, H., “MBone: The Multicast Backbone,”
Communications of the ACM, Aug. 1994, pp.54-60.

[10] Hickman, Kipp, “The SSL Protocol,” Netscape
Communications Corp., Feb. 1995.

[11] Kamp, P., Watson, R., “Jails: Confining the omnipotent
root,” Proc. 2nd International System Administration and
Networking Conference (SANE), May 2000.

[12] Lim, L., Gao, J., Ng, T., Chandra, P., Steenkiste, P.,
Zhang, H., “Customizable Virtual Private Network
Service with QoS,” Computer Networks, July 2001, pp.
137-152.

[13] PlanetLab – www.planetlab.org

[14] Rizzo, L., “Dummynet: A Simple Approach to the
Evaluation of Network Protocols,” ACM Computer
Communications Review (CCR), v27 n1, Jan. 1997, pp.
31-41.

[15] Savage, S., et al., “Detour: a Case for Informed Internet
Routing and Transport,” IEEE Micro, pp. 50-59, v 19, n
1, Jan. 1999.

[16] Stoica, I., Morris, R., Karger, D., Kaashoek, M.,
Balakrishnan, H., “Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications,” Proc.
Sigcomm 2001, Aug. 2001, pp. 149-160.

[17] Touch, J., “Dynamic Internet Overlay Deployment and
Management Using the X-Bone,” Computer Networks,
July 2001, pp. 117-135.

[18] Touch, J., Eggert, L., Wang, Y., “Use of IPsec Transport
Mode for Dynamic Routing,” RFC-3884, Sep. 2004.

[19] Touch, J., Finn, G., Wang, Y., Eggert, L., “DynaBone:
Dynamic Defense Using Multi-layer Internet Overlays,”
Proc. 3rd DARPA Information Survivability Conference
and Exposition (DISCEX-III), Washington, DC, USA,
April 22-24, 2003, Vol. 2, pp. 271-276.

[20] Touch, J., Hotz, S., “The X-Bone,” in Proc. Third Global
Internet Mini-Conference, Proc. Globecom ’98, Sydney,
Australia Nov. 1998.

[21] Touch, J., Pingali, V., “DataRouter: A Network-Layer
Service for Application-Layer Forwarding,” Proc.
International Workshop on Active Networks (IWAN),
Osaka, Springer-Verlag, December 2003.

[22] Touch, J., Wang, Y., Eggert, L., Finn, G., “Virtual
Internet Architecture,” Future Developments of Network
Architectures (FDNA) at Sigcomm, August 2003.
Available as ISI-TR-2003-570.

[23] Train, J., Touch, J., Eggert, L., Wang, Y., “NetFS:
Networking through the File System,” ISI Technical
Report ISI-TR-2003-579.

[24] Villanueva, O.A., Touch, J., “Web Service Deployment
and Management Using the X-Bone,” Spanish
Symposium on Distributed Computing, SEID2000, Sept.
25-27, 2000.

[25] Wang, Y., Touch, J., “Application Deployment in Virtual
Networks Using the X-Bone,” Proc. DANCE: DARPA
Active Networks Conference and Exposition, May 2002,
pp. 484-493.

[26] White, B., Lepreau, et al., “An Integrated Experimental
Environment for Distributed Systems and Networks,”
Proc. Fifth Symposium on OS Design and Impl. (OSDI),
2002, pp. 255-270.

[27] X-Bone web pages – www.isi.edu/xbone

[28] Zec, M., “Implementing a Clonable Network Stack in the
FreeBSD Kernel,” Proc. USENIX 2003: FREENIX
Track, pp. 137-150.

