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Abstract— This paper describes the deployment of a global 

Internet overlay testbed to support distributed, shared use of 
resources for network research. The Global X-Bone (GX-Bone) 
augments the X-Bone software system, enhancing its 
coordination mechanisms to support deployment of local overlays 
to world-wide, shared infrastructure. The testbed is based on the 
X-Bone’s Virtual Internet Architecture, which extends the 
Internet for both concurrent, parallel and recursive overlays, and 
provides decentralized, automated deployment and management. 
The global testbed supports host virtualization through the 
NetFS file system, granting individual users compartmentalized 
access and control of host and router configuration, and the 
DataRouter extension to IP loose source routing that supports 
application control of network-layer forwarding. GX-Bone can 
be installed on user-modified kernels, uniquely supporting both 
conventional kernel-level protocol development and coordinated 
sharing of global infrastructure. 
 

Index Terms—Overlays, virtual Internets, virtual networks, 
network testbeds, network management  

I. INTRODUCTION 
HE X-Bone is a system for deploying and managing 
Internet overlays [17][20]. It coordinates the configuration 

and management of virtual networks, enabling shared use of 
network resources (Figure 1). The Global X-Bone extends the 
X-Bone implementation from a stand-alone software system 
for local experiments to a global infrastructure for wide-scale 
network research. 
 Overlays can be used for isolation, concurrency, and 
abstraction. They protect traffic, allowing new protocols to be 
tested, and were originally used to protect multicast IP 
addresses from leaking onto the conventional Internet. 
Overlays isolate different protocols, such as was used to 
deploy IPv6 incrementally over the current IPv4 Internet. 
Overlays also allow network components to be shared, 
supporting network concurrency akin to multiprocessing. This 
allows concurrent network experiments to share core 
infrastructure, as the 6-Bone and M-Bone currently do. 
Finally, overlays provide abstraction of topology, allowing 
experiments with routing protocols on rings, where, e.g., the 
physical topology is a star, a ring, or of arbitrary design. This 
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allows the network topology to reflect forwarding decisions, 
as is done with peer-to-peer architectures, e.g., based on 
hypercubes or Plaxton trees [16]. 

 
Figure 1 : Multiple virtual Internets 

The X-Bone applies a general architecture for network 
virtualization to the Internet [20][22]. This architecture 
supports concurrence, recursion and revisitation. Concurrence 
allows deployment of multiple, parallel concurrent overlays. 
Recursion enables deployment of overlays inside other 
overlays. Revisitation enables reuse of the same node in a 
single overlay more than once. The core set of capabilities has 
been implemented as a software system that allows 
programmatic deployment of overlays through an XML 
interface; a web interface for user-directed deployment is also 
available.  

The X-Bone code has been available since 2000 as both a 
FreeBSD port and a Linux RPM. It has been used in numerous 
individual deployments to support overlay and application 
experiments and the development of advanced virtual 
networking architectures. Although the X-Bone architecture 
already supports global resource discovery, each of these 
installations has operated largely independently. This remains 
a key feature of the X-Bone system – each installation may 
remain completely decentralized in both management and 
operation. No global coordination is required. 

An X-Bone overlay contains both named and unnamed 
resources. The current X-Bone uses an expanding ring 
multicast search to discover unnamed resources. Named 
resources must be specified by IP address or DNS name. 
Although this simple mechanism is sufficient for local 
testbeds or pre-coordinated global experiments, it does not 
easily support a global testbed. On a global scale, it is 
inefficient to locate resources using multicast alone. The 
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existing implementation hence did not support the needs of a 
global community of X-Bone users that share their resources 
to create large-scale, distributed testbeds spanning numerous 
administrative domains. 

The Global X-Bone, which we call GX-Bone, is an effort to 
support this worldwide X-Bone user community in resource 
discovery and sharing. It augments the current X-Bone 
software with a centralized registry, where members publish 
information about resources they are willing to share. Access 
control is an integral part of this registry; members may 
indicate lists of users with whom they wish to share each 
resource. 

The remainder of this document presents a brief overview 
of the Virtual Internet architecture that is the basis of the X-
Bone, and the X-Bone system itself. It then describes the 
extensions that form the Global X-Bone, and the advanced 
networking capabilities that are being added to X-Bone nodes 
to address deficiencies of other current overlay systems. 

II. A VIRTUAL INTERNET 
A Virtual Internet (VI) is a virtual version of the Internet. 

Just as the Internet is a graph of hosts and routers connected 
through links, in a Virtual Internet, virtual hosts and routers 
are connected by IP-encapsulation tunneled links over the 
existing Internet. 

A VI generalizes the tunneled backbones that helped deploy 
multicast (M-Bone), IPv6 (6-Bone), and Active Networks (A-
Bone.) These testbeds supported wide-scale networking 
research by enabling the testing and incremental deployment 
of new protocols on existing infrastructure [1][4][9]. Unlike 
those interim solutions, VIs support persistent partial 
deployments of new capabilities. 

The VI Architecture (VIA) extends the Internet model 
composed of data sources and sinks (hosts), data transits 
(routers or gateways), and links between them [22]. The VI 
virtualizes each of those components, resulting in virtual hosts 
(VHs), virtual routers (VRs), and virtual links. The latter are 
typically encapsulation tunnels. The VI architecture has three 
basic tenets: 

TENET 1. Internet-like: VIs are composed of VRs 
and VHs connected by encapsulated tunnel links, 
emulating the Internet 

TENET 2. All-Virtual: VIs are completely virtual, 
decoupled from their base network 

TENET 3. Recursion-as-router: A VI recurses 
when some of its VRs are VI networks (the inner VI 
is modeled as a VR) 

A number of corollaries follow from these tenets: 
Corollary 1-A: Virtual hosts increase or decrease the 
number of headers on a packet 

Corollary 1-B: Virtual routers do not change the 
number of headers on a packet 

Corollary 2-A: VIs support concurrence 

Corollary 2-B: VIs support revisitation 

These tenets and corollaries are the basis of VIA. They 
evolved out of analogies between the VIA and 
multiprocessing and virtual memory (VM). Like both 
multiprocessing and VM, VIA allows multiple parties 
concurrent shared, protected use of a single resource in virtual 
ways. Like VM, VIA can use a small number of physical 
resources (memory page frames, network interfaces, 
respectively) to emulate a larger number (memory pages, 
virtual interfaces) by revisitation (swapping, known as 
revisitation in VIA). All can be layered recursively, and all 
provide a simpler, uniform abstract programming interface. 

III. THE X-BONE 
The X-Bone is a system for the dynamic deployment and 

management of Internet overlay networks [17][20][27]. 
Overlay networks are used to deploy infrastructure on top of 
existing networks, to isolate tests of new protocols, partition 
capacity, or present an environment with a simplified 
topology. Current overlay systems include commercial virtual 
private networks (VPNs), and IP tunneled networks (M-Bone, 
6-Bone) [1][9]. The X-Bone system provides a high-level 
interface where users or applications request DWIM (do what 
I mean) deployment, e.g.: create an overlay of 6 routers in a 
ring, each with 2 hosts. The X-Bone automatically discovers 
available components, configures, and monitors them.  

The X-Bone system allows different applications on the 
same end host or router to be associated with different overlay 
networks. For example, a single generic network mapping 
utility on one host might have different views of the network 
depending on whether it was attached to the base network or 
one of the overlays (Figure 2). 

 
Figure 2 : User’s view of overlays 

Some overlay systems require OS and/or application 
modifications, restrict the number of overlays a router or host 
can participate in, or require manual component configuration. 
The X-Bone requires no specific OS or application 
modifications and only basic IP in IP encapsulation, and uses 
existing implementations of IP services such as dynamic 
routing, name service, and other infrastructure. Finally, the X-
Bone virtualizes the current Internet architecture to support 
overlays, and supports stacking (recursion) of overlays for 
fault tolerance and capacity sub-provisioning for experiments.  
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Within each overlay, the X-Bone provides a completely 
standard networking interface that includes, for example, 
network interfaces, routing tables, and firewalls. Applications 
continue to interact with the virtualized versions of these 
mechanisms that are part of the overlay abstraction just as they 
interact with the regular, physical interfaces. This capability 
enables experimentation with advanced networking 
applications within a global, virtual network. Furthermore, the 
X-Bone supports experimentation with kernel-level 
networking modifications.  

The X-Bone uses a two-layer tunnel mechanism, rather than 
the single layer used in conventional overlays. It is this two-
layer scheme which supports stacked overlays, as well as 
permitting use of unmodified applications and network 
services inside a deployed overlay. It also permits network 
resources (hosts, routers) to participate multiple times in a 
single overlay, and is the only known overlay system that 
integrates both IPsec support and dynamic routing [18]. 

A. X-Bone Review 
The X-Bone is a distributed system composed of Resource 

Daemons (RDs) and Overlay Managers (OMs), with a 
graphical user interface (GUI) and a more direct API. These 
components are shown in Figure 3. The functions of the RD 
and OM have been incorporated into a single daemon, but 
operationally they can be discussed as distinct units. 
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Figure 3 : X-Bone architectural components 

OMs deploy overlays; a user creates an overlay by sending 
a request to an OM, either via a web-based GUI (Figure 4) or 
by sending an XML message directly to the OM API. Each 
overlay is coordinated by a single OM. Large overlays can be 
created by divide-and-conquer, where a single OM will fork 
sub-overlay requests to other OMs. Fault tolerance can be 
achieved by replicating state in multiple backup OMs. Both of 
these latter capabilities (recursion, fault tolerance) are 
supported in the X-Bone architecture, though not yet 
implemented in current releases. 

 
Figure 4 : X-Bone graphical user interface  

An OM creates an overlay in phases, using various 
mechanisms to locate the specific resources required for its 
construction. These discovery mechanisms include the 
existing multicast ring-search (shown in Figure 5), or the new 
registry that is part of GX-Bone. The overlay request is 
translated to an invitation, and the invitation is transmitted 
using UDP. An invitation indicates a set of simple conditions, 
e.g., a specific set of host operating systems, bandwidth 
requirements, etc. Invitations currently fit in a single UDP 
packet; where they do not, IP’s automatic fragmentation and 
reassembly is utilized.  

RDs are daemons that configure and monitor the resources 
of routers and hosts. RDs listen for UDP invitations, and 
respond when their capabilities, available resources and 
permissions match. The RDs respond with UDP messages, 
indicating their willingness to participate in an overlay, and 
their capabilities (protocol version, OS type, etc.). The OM 
selects a suitable subset from among the responding RDs1, and 
opens TCP/SSL connections to each chosen RD. The OM 
determines configuration information, such as tunnel endpoint 
addresses and routing table entries, and sends specific 
configuration information to each RD. Subsequent overlay 
actions initiated by the OM include keep-alive pings, 
liveliness and status requests, and modifying or dismantling 
configurations.  

 
1 An arbitrary selection algorithm again replaces an intractable 

optimization that is outside X-Bone’s scope. 
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TCP/SSL secures the reliable configuration channel only. 
The X-Bone supports S/MIME authentication to secure 
invitations; responses need not be secured, because they will 
be validated by subsequent TCP/SSL connections to the 
invited nodes, which will confirm their availability at that time 
anyway. 

 

Figure 5 : Responding to invites, selecting, and 
configuring the overlay 

B. Distributed System Implementation 
The X-Bone is a distributed system, where each overlay is 

coordinated by one OM, and each OM instructs RDs and 
possibly other OMs how to deploy and coordinate an overlay. 
A single overlay may be replicated at one or more other 
additional OMs, but at any given time, exactly one OM is 
managing each given overlay. A single OM usually manages 
many overlays.  

Users decide which OM manages a given overlay when the 
overlay is deployed, by which OM receives the initial request. 
Delegated sub-overlays are each managed at exactly one other 
OM, and these sub-OMs report back to the primary OM. RDs 
execute all local commands. 

The X-Bone is implemented in Perl, where the RDs run as 
root on local resources (hosts, routers) or on buddy-hosts from 
which they issue privileged configuration commands (e.g., for 
Cisco routers). 

C. GUI/API for Configuration Control 
The X-Bone includes two separate APIs, XB_API for 

overlay configuration requests and replies (TCP reserved port 
2165), and XB_CTL for issuing the generic resource 
configuration commands (UDP and TCP reserved privileged 
port 265). XB_API uses XML for a web-based front-end, to 
enable human-readable overlay requests. This control interface 
includes support for user-specified netlists, i.e., network 
connectivity lists, to indicate specific topologies. It also 
supports a small set of preprogrammed topologies: star, ring, 
and line. 

XB_CTL issues standardized configuration requests, which 
are translated by the RD into local versions, e.g., specific to 
the operating system and other node properties. 

D. System for Application Deployment 
The X-Bone includes a system for scripted application 

deployment (Figure 6) [24][25]. A single script is submitted 
during a request to deploy an overlay, with parameters 
instantiated on a per-overlay and per-node basis. The scripts 
accept a set of generic commands (config, start, stop, status) 
issued by the OM. These scripts have been used to deploy a 

set of web (squid proxy) caches, a set of FreeBSD jails, and to 
configure kernel modules for fault-tolerant layered overlays 
(DynaBone) [11][19]. The script deployment system is 
designed to deploy application-layer code, in the context of 
the addresses and DNS names of a particular overlay, on each 
node of an overlay in a coordinated fashion, as part of the 
automatic deployment system. 
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Figure 6 : Application deployment system 

E. Safety & Security 
The X-Bone design and implementation focus on security. 

The RDs need to run as root to configure interfaces, setup 
tunnels, and install IPsec keys; as such, they present a 
substantial potential security challenge. Further, distributed 
overlay deployment relies on selecting a number of nodes 
based on their capabilities; knowing these capabilities can also 
present a security hole. Finally, application deployment needs 
to be carefully controlled. 

The X-Bone uses an X.509 certificate hierarchy together 
with TCP/SSL to authenticate and encrypt all communication 
[10]. Each RD has its own access control list (ACL), which 
provides limits for each resource based on user’s names (via 
patterns). Such resources include number of overlays, number 
of tunnels, queue limits, bandwidth limits, etc.  Further, there 
are global resource limits for each node, as well as hard-coded 
constraints, which limit overlays to using RFC1918 address 
space, e.g. 
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The X-Bone sends S/MIME authenticated UDP invitations, 
and each node decides whether it has the resources indicated, 
as well as whether the user named in the request should be 
allocated those resources. Nodes respond to invitations only 
when they want to participate in the indicated overlay; 
otherwise, they can remain silent and anonymous. Some of 
this model needs to be relaxed in the GX-Bone, because it is 
not globally feasible to send invitations everywhere. 

All commands issued by the OM are authenticated based on 
the signed key of the OM, and recorded in the RD. Each RD 
has its own rollback and recovery mechanism, which allows 
RDs to re-install state on reboot, but also dismantles overlay 
configuration unless a heartbeat is received from the 
appropriate OM that created the corresponding overlay. 

Application deployment is controlled by limiting which 
functions are run as root. Although the RD uses root 
privileges for most configuration operations, application 
scripts are run as nobody, or as some preconfigured username. 
It is further possible to limit which scripts can be run on which 
nodes in the ACL, as well as to limit scripts to a predefined, 
preconfigured, signed set of defaults. Further 
compartmentalization of access is provided by NetFS [23]. 

IV. A GLOBAL X-BONE TESTBED 
As noted before, the X-Bone to date has been deployed as 

stand-alone software, to avoid the need for any centralized 
coordination. The X-Bone has already been deployed in a 
number of stand-alone testbeds. The first was a combined 
USC/ISI-UCL (Univ. College London) testbed in 2000, which 
was used for Active Nets demos involving nodes in Marina 
del Rey, CA and London, U.K. Other X-Bone systems were 
deployed in Ottowa, Canada, Univ. Catalonia, Spain, and 
Univ. Kentucky. Note that we do not have a list of all sites 
where the X-Bone has been deployed because the system does 
not require any central coordination. Although this allows 
testbeds to be autonomous and not rely on ongoing USC/ISI 
support, it also fails to leverage shared resources when such 
sharing is desired. 

As a result of our experience with independent deployments 
of the X-Bone, we are now preparing a global X-Bone 
deployment based on modified software. The new GX-Bone 
release includes an option, defaulted to “off”, to join the 
global X-Bone testbed. Joining this infrastructure involves 
several steps, each discussed in detail below: 

1. advertising a node in the GX-Bone registry 
2. incorporating a filtered copy of the GX-Bone ACL 
3. incorporating a filtered copy of the GX-Bone 

certificate authority list 
The basic purpose of these three components is, 

respectively, to assist with global resource discovery, to 
enable global use of shared resources by a known set of users, 
and to support distributed authentication at low cost.  

There are other capabilities, developed in conjunction with 
the X-Bone to support overlay research, which are expected to 
be part of the GX-Bone. These include NetFS, a system for 
partitioning root permission requirements, and DataRouter, a 
string-rewriting routing system which supports application 

forwarding at the network layer. 

A. The GX-Bone Registry 
In order to find nodes that may be anywhere on the globe, 

an OM needs to direct its invitations more intelligently than by 
multicast advertisement. Although multicast can be used, it is 
inefficient when most of the nodes lack the capabilities or 
locations desired. The simplest alternative is to have 
individual nodes register with a central database, indicating 
their willingness to participate in the GX-Bone. This 
registration may include any of a node’s properties, but should 
include enough information to limit the number of global 
invitations the node would receive. 

Once registered, there are a number of alternatives that can 
be employed to assist OMs in locating desired shareable 
resources. The simplest is to have the OM download the 
database periodically, or have it pushed when sufficient 
changes accumulate, and have each OM scan its local copy 
when searching for resources. Note that it is not necessary that 
the database be up-to-date, because OMs still send invitations 
to RDs, which are need to confirm their willingness to 
participate anyway. At worst, errors in the database will result 
in wasted invitations sent or available resources not found. 

Distributing a copy of the registry has other implications, 
however. One of the reasons the X-Bone used an “invite-
reply” protocol is to keep the resources of the local nodes 
private. Nodes respond only when they have the desired 
resources which can be allocated for the indicated user. Nodes 
that want to remain truly private need never make their 
presence known except to a limited set of parties. The central 
registry violates this principle, because it may contain 
sensitive information, such as a node’s OS, patches, etc. 

There are two ways to combat this privacy issue. First, 
information in the registry need not be complete; the less 
specific a node’s description, the more likely it will receive 
invitations from other GX-Bone OMs. Those invitations are 
not likely to be a source of denial-of-service themselves, and 
so can simply be ignored if desired. Second, the registry need 
not be downloaded to the OMs; instead, invitations can be 
forwarded to the registry as part of a ‘scan’ process. The 
registry can respond with a list of potential invitees based not 
only on the invitation parameters (OS=Linux, 
Testbed=CAIRN, etc.), but also based on the context of the 
issuing OM. This variant allows individual nodes to place 
some of their configuration information in the trust of the 
central registry. 

As with any resource location system, the GX-Bone registry 
has issues with scalability and performance. Like any 
database, it can be implemented in a hierarchical fashion with 
delegation along any parameter desired, e.g., by geographic 
region, by DNS suffix, by IP prefix, by propagation latency, or 
by capability (e.g., IPsec, IPv6, etc.). For the purposes of a 
global network testbed, a single central database suffices for 
overlay deployment timescales (seconds) and for the numbers 
of nodes expected in the near term (tens of thousands). 
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B. The GX-Bone ACL 
The use of a global registry enables resource discovery, but 

is insufficient to enable users to utilize nodes that were 
unaware of their need. In addition, there needs to be a global 
ACL, to indicate what kind of resources are to be shared to the 
general public or subsets thereof. The current X-Bone ACL 
can already express this sort of default, in the degenerate case, 
e.g., where name=“.*”; this is sufficient to allow users who are 
not otherwise listed to have resource permissions indicated. 

In a global testbed, however, a single, global default is not 
always the best. It is safer for users to advertise their general 
needs, e.g., 5 virtual interfaces per node, 2 overlays per node, 
etc., in advance. These general resource requests are listed in 
the GX-Bone ACL. Individual nodes can import any subset of 
entries in the GX-Bone ACL, e.g., via filters (import any 
where interfaces<5 and where name ends in “.edu”). Users 
managing nodes can review these requests, and enable or deny 
individual entries in their own ACL as desired. 

C. The GX-Bone CA list 
The X-Bone relies heavily on the X.509 certificate system, 

which presumes that identity is established based on certificate 
authorities (CAs) known a-priori. This is similar to web 
browsers, which have the CA certs of a known subset of 
commercial CAs loaded at compile-time. Browsers allow 
override of this list of CAs by two mechanisms: manual 
loading of new CA certs, and manual approval of certificates 
signed by unknown CAs (typically asking, “This certificate is 
signed by an unknown CA; would you like to enable it a)for 
this connection, b) for this browser session, or c) forever?”) 

Because the X-Bone RDs are completely automatic, and 
because the OM may be interacting with a program rather than 
by a browser GUI, such manual confirmation is not 
appropriate. Instead, the list of CA certs which are used by 
nodes joining the GX-Bone is listed in a central database, 
which OMs and RDs can load (or load subsets of) as desired. 

One alternative would be to preload a set of fixed CAs, as 
done with current web browsers, and assume that most X-
Bone deployments have X.509 certificates signed by these 
known CAs. Unfortunately, X.509 certificates from these 
commercial CAs are often prohibitively expensive for research 
testbed use. 

V. AUGMENTED KERNEL OPTIONS 
The X-Bone makes no specific requirements about the 

kernel on which it is deployed; provided the control software 
(PERL code) has been ported, any operating system will 
suffice. There are porting requirements, e.g., to support 
multilayer tunnels, to support IPsec transport mode on virtual 
interfaces, etc.; these generic capabilities are already provided 
in current versions of FreeBSD and Linux. The X-Bone allows 
nodes to be deployed on customized kernels with modified 
networking stacks as well.  

There are two modifications developed at USC/ISI in 
conjunction with the X-Bone system which may be deployed 
at GX-Bone nodes, to further enable advanced distributed 
network testbed capabilities. DataRouter supports packet 

routing based on string matching and rewriting, and is used to 
support application-layer forwarding in a network-layer 
overlay. NetFS supports partitioned permissions to limit root 
access within each overlay. 

Neither of these kernel modifications is required for a node 
to join the GX-Bone, but each will be indicated in the registry. 
These thus represent new capabilities which we hope will 
further support virtual network research. 

A. DataRouter 
The X-Bone was intended to support application-specific 

overlays, where the topology of an overlay would be uniquely 
matched to a particular application’s requirements. The goal 
was to have a single, network-layer system which could 
leverage existing protocols while supporting per-application 
topologies. This avoids having each application determine 
how best to deploy its own overlay. 

Peer-to-peer networks have become the counterexample to 
this goal. They implement application-specific overlays to 
forward requests at the application-layer, based on 
application-layer information. They cannot use typical 
network-layer overlays, because they require application 
control over forwarding rules, and require that the forwarding 
mechanism examine application data. 

DataRouter augments existing IP loose source routing 
(LSR) with string-based routes [21]. Individual next-hops are 
still indicated, as with LSR, by IP addresses, but subsequent 
hops are indicated by strings in the LSR field (Figure 7). 
When reaching a DataRouter LSR router, the string is matched 
against a list of patterns, and the matching rewriting rule 
applied. The rule also indicates the next-hop IP address, as 
with a conventional routing table entry. 

 
Figure 7 : DataRouter LSR as string rewriting 

DataRouter has already been applied to moving Chord peer-
to-peer forwarding to the network layer, with a 30x increase in 
performance [16]. As importantly, DataRouter-Chord 
applications need not implement a new reliable transport 
protocol on top of the application layer; it can reuse TCP/IP, 
achieving not only higher performance, but also congestion 
control compatibility. 

B. NetFS 
NetFS enables applications inside an individual overlay to 

retain control over the configuration of a subset of interfaces, 
without running the application as root. It maps local network 
resources – interfaces, tunnels, routing tables, IPsec databases, 
etc., to a virtual file system much like /proc maps processes to 
virtual files (Figure 8).  
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Figure 8 : NetFS maps network configuration to a 

virtual file system 

There are two advantages to such a mapping. First, root 
permissions can be partitioned, where applications deployed 
on one overlay can configure some network parameters but 
not others. Second, use of NetFS by applications simplifies 
portability; given multiple systems that support NetFS, a 
single application can manage network configuration on all 
systems. 

VI. PRIOR AND RELATED WORK 
The X-Bone was developed to automate the effort of tunnel-

based testbeds of the 1990s, notably the M-Bone and 6-Bone 
(the “X” in X-Bone is intended to denote a variable). It 
provides a more detailed architectural virtualization of the 
Internet, inspired by VPNs. It is designed to provide high-
performance, shared network resources for application-
specific use, rather than requiring recapitulation of effort as 
with peer networks. The GX-Bone variant is designed to 
provide a persistent network research infrastructure in the 
spirit of DartNet and CAIRN, but using primarily overlays 
rather than dedicated links. GX-Bone is a network version of 
distributed, global application testbeds such as the Grid and 
PlanetLab. 

The X-Bone itself is inspired by the way in which testbeds 
evolved in the early 1990s, from dedicated routers and links in 
DartNet and CAIRN to tunnel-based overlays in the M-Bone, 
6-Bone, and A-Bone [1][4][5][9]. Similar systems were 
envisioned earlier, notably MorphNet and SupraNet, in 
particular which described overlays at multiple layers in the 
protocol stack, or which explored recursion [2][6][7]. The X-
Bone is the first deployment system to bring these 
architectural components together in a single, proof-of-
concept implementation.  

The X-Bone’s network-layer overlays complement link-
layer testbeds, such as Emulab, and application-layer testbeds 
such as PlanetLab [13][26]. Both of these systems are 
persistent testbeds of shared components, PlanetLab being the 
larger-scale example. GX-Bone builds on PlanetLab’s set of 
global resources by deploying network overlays, as well as by 
providing coordinated deployment of applications by the X-
Bone’s automated script capability.  

GX-Bone is a global testbed that can deploy overlays on-

demand. Other overlay testbeds have been deployed, notably 
the M-Bone and 6-Bone, as well as testbeds for specific 
research projects, notably the RON testbed [3]. RON 
represents a single, static set of overlay tunnels, in effect being 
an instance of a single GX-Bone overlay. Other overlay 
experiments, such as Detour, and VANs (virtual active 
networks), were deployed using tunnels, but did not have a 
persistent infrastructure beyond the individual experiment 
[12][15]. 

VII. BENEFITS 
The GX-Bone provides a new infrastructure for network 

research. It provides a simple, user-level interface to dynamic 
overlay deployment. It supports concurrent overlays with 
automated resource management, avoiding the need for 
1960’s-style pegboard reservation schedules. It supports very 
high performance research, and allows the reuse of existing 
application, transport, and network layer protocols, as well as 
existing applications. It also allows experiments based on the 
existing knowledge base of kernel-level modifications, 
allowing custom kernels to participate in a global, shared 
infrastructure. 

A. Ease of use 
The X-Bone provides a web-based, do-what-I-mean GUI 

for overlay deployment. Resources are used as available, 
where nodes support concurrent overlays where possible, and 
avoid them (via resource counts, e.g., num_overlays=1) where 
necessary. There is no need for a 1960’s style pegboard 
reservation system, no need to reserve resources in advance. 
The X-Bone brings overlay deployment and use into the realm 
of multitasking, a kind of network multitasking operating 
system. 

This contrasts to previous network testbeds, such as DartNet 
and CAIRN, where resources were reserved by calendar 
system [5]. It also contrasts to PlanetLab, where ‘slices’ – sets 
of vservers deployed on a set of nodes – are deployed a-priori 
and left in place [13]. Further, due to how vservers operate, it 
is not possible to configure the network interface of a vserver 
from within that vserver, and PlanetLab configures the 
vservers but does not create tunnels between them. The X-
Bone has already demonstrated ‘slice’ deployment using our 
application deployment system, where a simple script –written 
in a few hours – was used to deploy a set of vservers 
connected by a set of IPsec-encrypted tunnels. 

Further, the X-Bone, and GX-Bone as a result, can deploy 
overlays emulating different network characteristics, using 
dummynet [14]. A deployed overlay can be configured with 
additional link latency, link bandwidth limits, link queue 
limits, or emulated link losses. Dummynet is only one 
example; any system that can be configured from the 
command line can configured by the X-Bone’s application 
deployment system or incorporated into the core system’s 
configuration instructions (X-Bone runs as source), as desired.  

B. Performance 
The X-Bone has achieved performance of gigabits/second 
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and hundreds of thousands of packets/sec on commodity PC 
platforms [19]. It forwards packets in the existing kernel code, 
at existing kernel rates. The X-Bone’s RD code configures the 
host or router, but otherwise packets are processed by the 
conventional, optimized code. The X-Bone software has been 
demonstrated to support hundreds of concurrent overlays on a 
single, conventional PC, and recursive overlays up to 16 levels 
deep. 

X-Bone packets are forwarded at IP forwarding rates at 
intermediate nodes. At overlay routers, there are additional 
encapsulation and decapsulation steps, as well as additional 
forwarding steps. With modern processors, the encapsulation 
and decapsulation steps are negligible, and the forwarding rate 
is limited only by the additional pass through the kernel that 
two-layer encapsulation requires. As a result, a single-level 
overlay (not recursive) forwards at roughly half the 
conventional IP forwarding rate.  

This contrasts to the performance of peer-to-peer systems, 
which typically ‘forward’ messages at 1/30 the rate of IP 
forwarding (5,000 pkts/sec, vs. 150,000 pkts/sec for an 
overlay, vs. 300,000 pkts/sec. base IP forwarding on a 2.4Ghz 
Xeon PC). 

C. Reuse of net and transport protocols 
The X-Bone enables network level research without the 

need for applications to reinvent transport and other protocols. 
DataRouter extends conventional IP forwarding with string 
matching and rewriting loose source routing, allowing an 
overlay to support peer-to-peer forwarding with network layer 
performance. Messages need not be terminated at each hop, 
e.g., using hop-by-hop (HBH) RPCs, as is done in Chord; such 
HBH behavior at the application layer requires additional 
application mechanisms to provide transport protocol 
properties, such as reliable, in-order delivery [16]. 

Further, network layer overlays can reuse existing network 
and transport protocol mechanisms, such as dynamic routing 
dynamic routing, congestion control, and windowing. This 
avoids the need for applications to reinvent – or rediscover – 
solutions to these well-known problems. 

By using network solutions to these issues, the X-Bone 
allows existing applications to operate over deployed overlays. 
Existing implementations of FTP, ping, traceroute, web 
servers, mail servers, etc. all operate over X-Bone overlays. 
This leverages the installed base, and avoids additional effort 
and errors of recapitulation. 

D. Allows custom kernels to participate 
The X-Bone’s design relies on conventional IP packet 

forwarding, with common extensions for IP encapsulation, 
where the entire X-Bone system is deployed at the application 
layer. RDs and OMs configure network interfaces, tunnels, 
and routing table entries; packets continue to be forwarded by 
existing kernel mechanisms. DataRouter is a good example of 
how conventional kernel-based network protocol experiments 
can be incorporated into an X-Bone overlay; the X-Bone 
system is deployed on a DataRouter kernel [21]. Similar 
modifications can be deployed anywhere in the GX-Bone, 

flagged by labels which can be used by experimenters to find 
appropriate nodes anywhere in the world (e.g., find 
“DataRouter” nodes). 

VIII. FUTURE WORK 
The GX-Bone, like the X-Bone on which it is based, 

represents an ongoing effort at USC/ISI to develop and 
explore the Virtual Internet Architecture. In addition to the 
ongoing development of the GX-Bone system, including its 
registries and discovery system, we are working to enable 
more complex, layered deployment of large-scale overlays. 
Two specific avenues of future work involve support for 
partitioned resources and support for inter-overlay gateways. 

A. Partitioned resources 
The X-Bone currently deploys network-layer overlays, 

assuming individual nodes can participate in multiple overlays 
without mutual interference at the network layer. NetFS is 
designed to avoid the interference of root permissions among 
these overlays, but there are other ways in which overlays 
compete at shared resources. In particular, it can be 
challenging to limit computational resources, disk volumes, 
etc. across overlay instances, as current hosts and routers do 
not expect to virtualize their resources. 

Jail partitions some of these resources, notably disk volume 
access, and provides localized root permissions for some 
purposes. Unfortunately, jail and its variants (vservers, 
VMware, etc.) do not fully support our Virtual Internet 
Architecture’s notion of network reentrancy, where wildcards 
like INADDR_ANY map only within each partition. These 
systems also do not support sets of associated interfaces within 
a jail, partitioned from other sets in other jails.  

Clonable stacks are a step in the right direction [28]. 
Although intended to support alternate network stacks, e.g., 
TCP-Reno and TCP-Tahoe, it can be used to support the 
associations required for network reentrancy. In particular, 
interfaces within a single overlay at virtual router instance are 
associated with a weak-host model, and interfaces between 
such interfaces are associated by the strong-host model. 

Clonable stacks also offer new opportunities to limit the 
amount of CPU load allocated to each stack, thus limiting the 
computational resource interference of multiple virtual hosts 
or virtual routers instantiated on a single node. There remains 
substantial work to explore and validate this capability, and to 
port it to other systems. 

B. Inter-overlay Gateways 
The current X-Bone deployment system assumes that 

individual overlays are strongly partitioned, avoiding inter-
overlay interaction. This prohibits inter-overlay gateways, 
such as would be used to splice together disparate services 
running on individual overlays. It is not yet clear what best 
architectural extension would support this capability, because 
we prefer the Internet model (common communication 
framework) to that of concatenating disparate network layers. 
One possible option is to explore recursion for this capability, 
where each recursive component represents a unique network 
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architecture, and the overarching “outerlay” (to borrow 
terminology from DynaBone) supports the gatewaying 
capability [19].  
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