
A Virtual Internet Architecture1
 Joseph D. Touch, Yu-Shun Wang, Lars Eggert, Gregory G. Finn

{touch,yushunwa,larse,finn}@isi.edu
USC/Information Sciences Institute

March 24, 2003

Abstract – A Virtual Internet (VI) is an IP network
composed of tunneled links among a set of virtual
routers and virtual hosts. The architecture, like its
virtual memory counterpart, provides an abstraction
that hides the complexity of the underlying network
and provides isolation-based protection that
encourages resource sharing. A VI completely
decouples its component hosts and routers from the
underlying network to support both sibling and
recursive VIs and to allow a node to participate
multiple times in a single overlay, known as
revisitation. The VI architecture provides a consistent
multihoming paradigm, including end-to-end
overlays, naming and addressing, virtual host
requirements, and virtual gateway requirements.
Consequences of the architecture are presented,
including basic implications on the underlying
network and host operating system, as well as
additional requirements and mechanisms needed to
support recursion and revisitation. Several
implementations based on this architecture are
discussed that explore the capabilities of VIs,
including automated deployment and management,
recursion for fault tolerance, geographic delivery,
and support for peer-to-peer systems.

I. INTRODUCTION

A Virtual Internet (VI) is a virtual version of
the Internet in which virtual hosts and routers
are connected by IP-encapsulation tunneled links
over the existing Internet (Figure 1). A VI is an
overlay network that rides on top of an IP
network, and all the capabilities of the Internet
in the overlay. VIs can provide security and
isolation like VPNs, for whole virtualized

networks rather than just remote hosts or
subnets, unlike VPNs.

VIs generalize the tunnel backbones that
helped deploy multicast (M-Bone), IPv6 (6-
Bone), and Active Networks (A-Bone) [1][4][8].
Those backbones enabled new protocols to be
tested and incrementally deployed on existing
infrastructure. Unlike those interim solutions,
VIs are intended as a more permanent capability,
further enabling incremental tests, as well as to
support persistent partial deployments of new
capabilities where desired.

Star VN

Base Net

Ring VN

Figure 1 Multiple virtual Internets

Like their virtual memory (VM) counterpart,
VIs manage concurrent sharing of resources,
provide protection, and present an abstraction of
the underlying service. Each process on a host
may participate in a different VI (Figure 2).
Address spaces of VIs are managed to avoid
overlap except where they explicitly share
components (gateways). Applications can
interact with simplified topologies, e.g., trees for
DNS or rings for web caches, without requiring
application participation in creating or managing
those structures – identical to that provided by
the Internet, in which the name resolution and
forwarding are provided services.

1 Effort sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory, Air Force
Materiel Command, USAF, under agreements number F30602-98-
1-0200 entitled “X-Bone” and number F30602-01-2-0529 entitled
“DynaBone”. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of the Defense Advanced Research Projects Agency
(DARPA), the Air Force Research Laboratory, or the U.S.
Government.

1

Figure 2

Figure 3

Figure 4

User’s view of VIs

The VI architecture provides new capabilities
for virtual networks, including recursion and
revistation. Recursion allows VIs to be stacked,
providing new opportunities for fault tolerance
and path diversity. Revisitation allows a single
base network node to emulate multiple VI
nodes, allowing a VI to emulate larger networks
than the base on which they are deployed.

The need to be virtual…

VM provides a paradigm that decouples the
process memory from physical memory.
Processes view memory as a single linear
address space, starting at zero. Programmers
need not focus on page layout in memory
frames, address translation, paging, or even
swapping to disk to emulate larger memory
spaces. Processes are protected from each
other’s space, and space is allocated and
managed by the operating system.

Current networking, by contrast, is closer to
pre-VM programming. Distributed systems are
exposed to the underlying network topology, and
programmers or applications manage tunnels
directly. Address spaces can collide, and there is
no effective way to emulate a larger topology.
Overlays are manually configured, with no
automation to clean up abandoned overlays.

The VI architecture provides VM-style
abstraction to networking, decoupling the virtual
topology from the physical, and enabling
automated coordination and management that
avoids these pitfalls. Recall the star and ring
overlays shown in Figure 1, and how they map
onto the underlying network (shown in Figure 3
and Figure 4).

Map of star onto base

Underlying nodes in the base network may act
as virtual hosts (solid dots), virtual routers (solid
rings), tunnel transits (dashed rings), and some
do not participate at all (dotted rings). Note that
some nodes in the base network participate in
multiple ways, e.g., all nodes in the ring are both
virtual hosts and virtual routers (circle around
dot), and some are also tunnel transits.

Map of ring onto base

There are a number of overlay systems that
address portions of the VI architecture, and
others that justify the need for one. Some of the
VI architecture is already represented by M-
Bone-style overlays and VPNs [8][19]. The
broader end-to-end networking of VIs
complements the backbone focus of these
systems, and builds on the work of the X-Bone,
VNS, and RONs [2][12][20]. The abstract nature
of the VI and the presence of a fall-back base
network enable automated VI management.

The VI also supports recursion and
revisitation and resolves the impact of overlays
and these extensions on the host and router

Star VN Base

Base Net
ring star

map

Base

Ring VN

map

2

requirements of the current Internet. Some
systems recapitulate these requirements at the
application layer (e.g., peer-to-peer networks),
while others are limited to simplified
deployments to avoid those issues (typical
VPNs) [14]. Finally, few of these systems are
interoperable or are advocated as permanent
extensions to the Internet architecture.

This paper presents the VI architecture and
discusses its virtual host, virtual router, and
virtual link components, and the implications of
virtualization on host and router requirements.
New mechanisms that support new capabilities
are presented, including a system that enables
recursion. Finally, the architecture is applied to
develop new services such as geographic
delivery and recursion for fault tolerance, as
well as to enable automated network
management.

II. VI ARCHITECTURE

The VI extends the Internet model of
networking, composed of data sources and sinks
called hosts, data transits called routers
(originally called gateways), and links between
them [3][5]. In the Internet architecture, links are
essentially static; link creation and tear-down
occurs during network deployment, whereas
links are configured up or down on shorter
timescales. Forwarding is the process of
deciding the next-hop destination of packets
traversing a transit, and routing is the system of
information exchange and computation that
determines forwarding tables.

A VI virtualizes all these components. A
single network node (host or router) may
participate as virtual host, virtual router, or
multiples of each simultaneously. Virtual links
are part of VI deployment, and whether a link is
available or not can affect VI routing. Note that
VI links are not deployed as a result of routing
computations; the act of provisioning a VI
network and the routing within are decoupled.

The specifics of the VI model begin with its
requirements and assumptions. The architecture
is then presented, including details of its
components and their characteristics. The
implications of these decisions are addressed in

Section III. The following describes the
requirements and architecture of a system which
has been implemented in FreeBSD and Linux.
Details of the implementation are discussed
throughout, and summarized in Section V.

II.1. Requirements

First and foremost, a VI is a network, a
complete topology consisting of virtual hosts
and virtual routers. This is distinct from typical
VPNs, which tether individual remote hosts to
an existing private network, or tie together two
separate pre-existing networks. Other systems
focusing on backbones include VNS, PPVPN,
and many of the original overlay backbones (M-
Bone, 6-Bone, A-Bone). It is critical to include
hosts in the architecture; otherwise, key issues in
addressing and source address selection are
obviated.

VI further inherits all the conventional aspects
of the current Internet, including the previous
definitions of hosts, routers, and links, as well as
the assumption of conventional multihop paths
and unique (at least within an overlay) endpoint
addresses. These assumptions are the result
virtualizing the underlying network – the
Internet. A VI runs over the Internet, and
provides an IP overlay with all the capabilities
of the existing Internet.

The overall goal of the VI is to provide an
environment that applications and routing cannot
distinguish from the existing underlying
Internet. The resulting system thus avoids the
need to reinvent network, transport, and
application protocols, or to reimplement routing
and forwarding algorithms, as with application-
layer peer-to-peer systems [14]. It also enjoys
the scalability of hop-by-hop forwarding using
local decisions that link-layer emulation does
not.

The VI includes additional assumptions which
are not strictly required, but desired for a
consistent and generic architecture. VI links use
IP in IP encapsulation to avoid the need for new,
non-ubiquitous protocol support [15]. Security –
the P in VPN – is orthogonal, a property of links
that can be enabled or disabled without effect on
the rest of the network. The purpose of VI
security is to preserve the contents of links, to

3

protect the network layer, including routing
exchanges. Additional end-to-end application
security is provided by existing Internet
transport or application layer protocols.

Finally, a VI assumes concurrence, recursion,
and revisitation. Individual components can be
members of multiple VIs concurrently. A VI can
be deployed on top of an existing VI, just as on a
base Internet, where the upper VI is a subset of
the nodes of the lower network. Individual
components can participate multiple times in a
single VI overlay. All these properties ensure
consistency and attempt to create the most
flexible and capable generic VI architecture.

Summary of VI Architecture

The VI architecture can be summarized by a
few basic principles:

1. VIs are composed of VRs and VHs
connected by IP encapsulated tunnel
links, emulating the Internet architecture

a. Virtual hosts are data sources
and sinks; only VHs increase or
decrease the number of headers
on a packet (i.e., encapsulate or
decapsulate)

b. Virtual routers are data transits;
only VRs transit packets
without changing the number of
headers

2. VIs are completely virtual, decoupled
from the base network on which they are
deployed

a. VIs support concurrence

b. VIs support revisitation

3. VIs recurse by emulating a VI network
as a VR in the base network

a. In control recursion the inner
network has unbound upper VR
interfaces which are the
interfaces of the emulated VR in
the base network

b. In network recursion the inner
network has phantom VHs
which are the interfaces of the
emulated VR in the base

network; these phantom VHs
add and remove the headers of
the recursive VI

The details of the architecture follow from
these basic principles. Notably, even some of
these principles (the a,b items) follow from the
main axioms (1,2,3).

II.2. Components

The VI architecture is composed of virtual
hosts, routers, and links, using a variant of
unique endpoint addresses. VI hosts and routers
develop and extend the Internet’s currently
limited multihoming capability to support
concurrent VI participation. VI links incorporate
two layers of tunneling to support revisitation,
representing separate virtual link and network
layers. Recursion is supported, both of
configuration and deployment, as well as true
network-on-network recursion.

Nodes of a VI overlay use unique endpoint
addresses for interfaces on both hosts and
routers, as with the conventional Internet.
Addresses within each overlay are unique, but
addresses may be reused in another overlay
provided the two overlays share no nodes in
common in the underlying network. This is
known as “ships in the night” (SITN)
addressing, after the term used to describe
protocols that coexist but do not intermingle
[10]. These addresses are managed by a separate
automated system that assists in the deployment
of overlays.

Other systems use separate VPN identifiers to
distinguish IP address spaces in separate
overlays [9]. This assumes that the VPN ID is
itself unique, or at least SITN-unique, where no
two overlays sharing a node use the same VPN
ID. The VI architecture assumes the use (and
reuse) of RFC-1918 private address space,
because the effort of maintaining SITN-unique
VPN IDs is identical to that of maintaining
SITN-unique addresses, and the latter can use
existing IP encapsulation mechanisms [15][17].
Using IP encapsulation further allows VIs to use
existing implementations of application,
transport, and network protocols, and existing
implementations of forwarding and routing
algorithms.

4

II.2.1.Virtual Hosts Partitioning supports both concurrency and
revisitation. Sets of interfaces associated to each
overlay enforce per-overlay routing protocol
exchanges. This restores the meaning of the
ubiquitous universal inaddr_any on multihomed
hosts, where it must now be associated to an
overlay, but need not specify individual
addresses therein. The effects of multihoming
and partitioning extend throughout the VH and
VR, and are also discussed in Section III.

Virtual hosts (VH) are sources and sinks of
traffic on a VI overlay, and virtual routers (VR)
are transits on a VI overlay. Being a VH or VR
is a property of a node of the underlying
network, whether host or router. Those nodes
may participate as multiple VHs and/or VRs in a
single overlay, or may participate as VHs and/or
VRs in multiple concurrent overlays.
Multihoming is thus a critical component of the
overall architecture, as it relates to both hosts
and routers [5].

The use of multihoming requires revisiting the
strong vs. weak end system model [5]. The
model determines whether addresses refer to
interfaces or to the host to which they attach. In
the strong model, addresses refer to the
interface, and incoming packets are checked to
see if they match the address of the interface on
which they arrive (Figure 6, left). If they do not,
they are discarded. This is seldom used in the
Internet at the network layer, though it pervades
the link layer, e.g., Ethernet packets are accepted
only if they are addressed to the arriving
interface. The weak model allows arriving
packets to match any interface on the host
(Figure 6, right).

 Multihoming in the VI architecture extends
the concept of an embedded virtual router,
developed earlier to support hosts being on both
experimental and production networks [21]. In
this earlier model, all host traffic is directed
through a phantom internal router, allowing end-
to-end traffic to be forwarded through alternate
outgoing host interfaces while using a single
source address for traffic (Figure 5). For the VI,
this implies that all VHs include VR capabilities
and are full participants in the routing protocol
of the overlay. This challenges certain
implementations of routing protocols on base
network hosts, such as gated, mrtd, and zebra. Although Internet hosts tend to have weak

network layer addressing, they also tend to have
strong link layer addressing. The VI architecture
recognizes this duality, and includes both a
virtual link layer and a virtual network layer.
The former uses the strong model and the latter
the weak. The strong model is required for
revisitation.

NIC Host
Phantom

VNIC Router
NIC

Figure 5

Figure 6

X Y X Y
to Y Host as router & internal host to Y

➼Multihoming is required for all components of
the VI, because even a base host with a single
VH is necessarily a member of at least two
networks – the Internet and the VI overlay. As a
result, hosts need routing capabilities, and both
VHs and VRs need to partition the interfaces
into sets. This latter capability is required for
routing protocols to exchange reachability
information among the (virtual) interfaces of a
single VI overlay, but to also keep the routing of
different VIs separate.

Strong Weak
Strong vs. weak model

Other VPN protocols (GRE, PPP, PPTP, etc.)
encode the virtual link and virtual network
information inconsistently, both in the IP and
transport layer headers. VI encodes them
separately in distinct IP headers, allowing
different layers to enforce the appropriate
mechanism as necessary. The VH uses

5

Figure 7 VI hop-by-hop header rewriting forwarding rules to implement the two-layer
encapsulation by weaving packets among
tunneling interfaces. The current VI
implementation of strong host packet processing
uses firewall rules to enforce strong host
behavior on link-layer tunneling interfaces.

The packet must be wrapped in an outermost
header that indicates the source and sinks of the
tunnel using the base network addresses, e.g.,
X Y, then Y Z. Note that this outer header is
rewritten on each hop, like a link layer.

II.2.2.Virtual Routers In the above example, the link layer addresses
(Q, R, S, T) are not strictly needed. However,
when revisitation is considered, these link
addresses are required to distinguish between the
Nth and N+1st visit to a node. Such revisitation is
show later in Figure 11. Support for revisitation
requires that Internet hosts (as noted before) and
routers support forwarding based on the
incoming interface, as well as the packet header.

Virtual Routers (VRs) are similar to their base
network counterparts, where different overlays
are similar to non-interacting autonomous
system domains (ASs). Routing information is
exchanged among the interfaces of a VI overlay,
but not between overlays or with the base
network. Forwarding is similarly partitioned,
where packets arriving on the interfaces of one
overlay go out interfaces of that overlay or are
dropped. Having a separate virtual link and virtual

network layer further allows IPsec to be
deployed on the virtual link layer independent of
application IPsec at the virtual network layer or
base network IPsec in the outermost base packet
header.

Given SITN IP addressing, forwarding
partitioning is provided by avoiding default
routes, or by using forwarding mechanisms that
permit multiple independent defaults (i.e., that
explicitly support grouping interfaces into sets).
It is further useful if multiple routing daemons
(one per VPN) can coexist, or if routing
configuration supports explicit grouping of
interfaces.

II.2.4.Advanced Issues

There are additional considerations to
developing a VI architecture. There are several
details involving recursion and revisitation and
complexities with IPsec interactions. A system
for automating overlay deployment and a
language for describing VIs are also discussed.
Finally, there are issues with scalability, notably
affecting the performance of recursive VIs that
can be effectively stacked.

II.2.3.Virtual Links

Virtual links encapsulate packets in additional
IP headers. The VI architecture uses two layers
of encapsulation for each virtual link, to support
revisitation. Consider a VI packet, which
consists of data inside an overlay endpoint
header. The innermost header indicates the
source and sink addresses on the overlay, e.g.,
A D in Figure 7. In that figure, base addresses
X,Y, Z are used for the end hosts and router, and
addresses Q, R, S, T are used for overlay links
(OL), and A, B, C, D are used for overlay
network addresses (ON).

There are two distinct forms of recursion that
that the VI architecture supports: control
recursion and network recursion (Figure 8). Both
are called recursion rather than stacking because
there is no strict limit on layering;
architecturally, both are recursive structures.

DATA

DATA A D Q R X Y DATA A D S T Y Z

ON-D ON-A
OL-T OL-Q
B-Z

HOST
B-X

HOST

DATA A D A D

ON-B ON-C
OL-R OL-S

B-Y
ROUTER

6

Figure 8

Figure 9

Two types of recursion

Control recursion is akin to compile-time
recursion of the VI description language. It
allows a compact symbolic representation to be
expanded during deployment, allowing divide-
and-conquer network management. Network
recursion is true stacking of a VI on another VI,
where packets on the uppermost VI have
additional layers of header encapsulation when
traversing inside the upper VI. Network
recursion allows intermediate VIs to support
advanced network capabilities and provide them
as a service to the upper VI, e.g., dynamic
routing can be used to support fault tolerance,
even when the uppermost VI considers its
overlay statically routed.

Figure 8 depicts both kinds of recursion. In
this figure, hosts are squares and routers are
circles. Each component has a network
management daemon, shown as a triangle. One
example VI architecture uses a controller
daemon per VI, shown as a checkered diamond.

The figure shows how the VI architecture
represents recursive embedded VIs as a VR in
the upper-layer VI. In control recursion, the
management daemon of that router is really the
top-half of the controller daemon of the recursed
VI (left circle). The interfaces of that router
(edge of the circle) are unbound interfaces of
routers inside the recursed VI. The result is
divide-and-conquer deployment of a flat
network structure where the internal recursion
topology is visible throughout the upper VI.
Packets traversing a control recursion VI have
the same number of headers on links inside the
recursion as outside the recursion.

In network recursion the recursed VI (right
circle) is a VI layered on top of the base VI also

modeled as a VR. It has a similar controller
daemon, where the top-half of the recursive VI
controller daemon plays the role of a router
management daemon in the base network.
However, packets inside a network recursion VI
have additional headers that represent the hops
inside the recursion; these hops are not visible in
the base network. To the base network, the
recursed VI looks exactly like a single virtual
router. NetworkControl / deployment

Note that the VI models recursion of both
kinds as a router, in the former case as a router
with unbound interfaces, and in the latter case,
as a router in the base network whose interfaces
are phantom VHs in the recursive VI (shaded
boxes in right circle). The network recursive VI
represents its edges as hosts because hosts are
the only component of a VI where a packet has a
different number of headers when arriving (e.g.,
from an application) vs. leaving (e.g., out to the
network). The hosts are phantom because they
do not exist in the inner network; they exist
solely to represent the interfaces of the VR in the
lower VI.

As noted earlier, VI packets include two
overlay headers – one for endpoint network
addresses, and one for hop-by-hop link
addresses (Figure 9). The application sets the
overlay endpoint (typically destination; the
source is added automatically), and the VI
configuration sets the overlay link and base
Internet addresses. When VIs are stacked, at first
it would appear that two additional layers of
headers would be required for each layer or
recursion. However, the overlay link of the
upper VI also serves as the overlay network of
the lower VI, as shown in Figure 10. This reuse
is possible because virtual interfaces use exactly
one address, and addresses are never reused
where overlays overlap (SITN addressing).
Reuse of the base network address in similar
fashion is not possible because base interfaces
are not necessarily exclusive to a single base
address.

O-Link Base InetData O-End

Basic VI header

7

There are no particular limits to the scalability
of the VI architecture. Control recursion allows
divide-and-conquer recursive deployment of
large-scale flat topologies, and network
recursion allows similarly scalable deployment
of layered networks. The first VI layer adds two
IP headers each of which may be compressed
down to a single byte for frequent traffic [11].
Each header decreases the effective MTU of the
underlying network, but with fragmentation this
can be ignored – except for its effect in lossy
environments. When upper layer VI packets are
fragmented to fit into lower layer MTUs, and
fragments are lost, the VI becomes very
inefficient and may be effectively disabled.
Tests to determine the limit of effective
recursion are underway, and have indicated that
there is little effect for the first two layers of
stacking, even though the base MTU has
decreased by over 10% (by 60 bytes). The focus
of the VI is capability over performance,
verified by experience with a variety of users.

Ovl Base InetOvl Data
Ovl Ovl

Figure 10

Figure 11

VI on VI header – overlapping
addresses

Revisitation allows a VI to be completely
decoupled from the components of the base
network. Virtual memory already provides this
capability, one which has proven invaluable in
supporting virtual machines, as well as
emulating large-scale systems in software.
Similarly, a VI aims to allow overlay
networking to be as flexible.

In revisitation, a single node participates
multiple times or ways in a single overlay.
Figure 11 shows a VI (top) and how it is mapped
onto an underlying network. In this case, VH A
is mapped onto base host X, and VRs C and E
are mapped onto base router Z. Base router Y
participates three times – once as VH F, and
twice as VRs B and D. Packets sent from A to F
will enter Y three times; Y needs a way to
distinguish the various visits. The overlay
endpoint addresses do not change (A to F), and
for some paths even the hop-by-hop base
addresses do not change (Z to Y). Virtual link
addresses allow Y to distinguish between visits
from, e.g., hops C’ to D’ from E’ to F’ (/’/
indicating virtual link).

III. IMPLICATION/CONSEQUENCES

The VI augments the Internet architecture
with support for virtualization. The implications
of this augmentation are discussed, including the
effect on network architecture, component
architecture, on protocols, as well as the
opportunities it affords for automated network
management.

A F E B C D
Network nodes require a system for

associating sets of network interfaces of
respective VIs with each other. Routers need to
contain routing protocols within each component
virtual router, and virtual hosts need to map
inaddr_any to meaningful subsets of addresses.

Y Z X
B CA

D EF

There are other issues of what is called
“network reentrancy” – aspects of networked
applications that require special attention to
support concurrency. Most can be provided by
judicious programming; they include:

 Revistation (VI above, as deployed
including revistation below)

A language is under development that
describes VIs and enables their automated
deployment. It builds on the work of the X-Bone
and VNS, both of which included languages for
describing overlays [12][20]. The VI language
has additional capabilities for both forms of
recursion as well as revisitation.

1. avoid use of inaddr_any; bind to explicit
lists of addresses instead

2. avoid use of directory names or login names
that cannot be overridden, e.g., log files,
configuration files, user IDs/group IDs, etc.

8

3. bind only to the most specific addresses and
ports possible

Providing subsets of addresses also may
require providing authorization to modify only
one of the subset, i.e., fine-grained configuration
control.

As previously noted, revisitation requires two
layers of encapsulation in which one layer is
strong and one weak. Forwarding must enforce
the strong layer constraints, which typically
requires policy routing, where the incoming
interface is context for the subsequent
forwarding decision. In current host operating
systems, policy routing can be emulated using
firewall rules, but this should be replaced with
an integral policy routing and forwarding
framework.

Network recursion requires a new protocol,
one which combines some of the aspects of BGP
and others of ARP. VI recursion models the
upper VI as a virtual router in the lower VI.
When packets arrive at that router in the lower
VI, they expect to exit on the appropriate
interface; this function is normally internal to the
router, and performed internally by a mechanism
akin to ARP.

Inside the recursive VI, packets are arriving at
a VH on one side of the network and must be
delivered to a particular VH on the other side –
the exit-VH. Determining the proper exit-VH in
a recursive VI is similar to determining the exit
router of an AS using BGP. As a result, network
recursion requires a merged variant of BGP and
ARP. Preliminary analysis indicates that this is
less of a hack than a generic mechanism that can
be used to describe a variety of ‘successive
recursive resolution’ systems, including Google,
the DNS, IP forwarding, BGP routing, and ARP.

Finally, the VI enables extensive automation,
and benefits greatly from its use. VIs are built on
base IP networks, so they can assume underlying
network connectivity for management and
control. Coordinated systems for configuring
VIs ensure SITN addressing to enable effective
use (and reuse) of RFC1918 addresses, allowing
virtualization without requiring support for new
protocols [10][17]. As a result, VIs support
existing applications, protocols, and operating

systems with modifications needed only to
support multi-pass encapsulation and
forwarding.

IV. PRIOR AND RELATED WORK

Virtual Internets are a general virtual
extension to the basic Internet architecture
[3][5]. They virtualize all components of the
Internet, providing the same functionality inside
each virtual layer as exists in the base Internet.

VPNs extend portions of existing networks to
remote sites, usually incrementally [19]. They
do not deploy a complete, virtualized network,
but rather focus on attaching hosts to existing,
private networks over the public Internet. VPNs
may use tunnels, or may use other means, e.g.,
tags, to separate private traffic from public, and
lack support for virtual routing. PPVPNs are the
complement of a VPN [6]; they consist of a
virtual core with translation boxes at the
periphery. The core supports virtual routing, but
hosts are not part of the virtual network, and
cannot participate in multiple PPVPNs
concurrently.

PPVPNs also include VLANs, using a link
layer to develop a virtual infrastructure. Link
layers are notoriously non-scalable, imposing
limits on response time and often requiring
broadcast emulation for address discovery. By
contrast, network layer virtual networks avoid
those issues by using hop-by-hop forwarding,
well-developed routing algorithms, and
distributed address translation mechanisms (e.g.,
DNS).

Peer networks, as was noted earlier,
recapitulate network architectures at the
application layer [14]. They use application
layer tunnels, and provide virtual routing at the
application layer. Because each peer network is
based on a separate architecture, it is difficult for
a single application to participate in multiple
peer networks. By contrast, a virtual Internet
uses the same API at all layers, allowing a single
application to use whatever layer is needed.

Virtual Internets are generalizations of the
static, manually-deployed m-Bone, A-Bone, and
6-bone tunneled backbones [1][4][8]. VIs

9

The VI architecture avoids issues of
optimization, e.g., to use overlays to provide
alternate routing services, as done with RONs
and Detour [2][18]. This is a consequence of
being truly virtual, where there can be no
assurance that the path taken by the overlay is
any better than the path of the underlying base
network.

emphasize protection and abstraction, rather
than optimization, as with RONs and Detour
[2][18]. VI optimization can be achieved by
replacing a portion of the general purpose
architecture, just as a realtime OS can be
achieved by replacing the scheduler in a
conventional OS.

VIs enable automated support for multiple,
concurrent virtual networks. They have already
been used to support shared testbeds, automated
deployment of applications, and management of
overlapping address spaces, some of the goals of
PlanetLab [16].

VI. REFERENCES

[1] 6-Bone URL – www.6bone.net

[2] Anderson, D., Balakrishnan, H., Kaashoek,
M. F., Morris, R., “Resilient Overlay
Networks,” Proc. 18th ACM SOSP, Banff,
Canada, October 2001.

V. STATUS AND FUTURE WORK

The VI architecture has been implemented in
the X-Bone system and is under internal
evaluation [22]. Concurrency and multilayer
tunneling, as well as basic VI deployment and
coordination are provided by a distributed
network management system. The basic aspects
of network recursion and dynamic routing,
including the unified BGP/ARP mechanism, as
well as revisitation have been implemented and
tested, but not yet automated. Control recursion
and extensions to the VI language to support
recursion and revisitation are currently under
development.

[3] Baker, F., “Requirements for IP Version 4
Routers,” RFC 1812, June 1995.

[4] A-Bone URL – www.isi.edu/abone

[5] Braden, R., ed. “Requirements for Internet
Hosts – Communication Layers,” Internet
RFC 1122, IETF, Oct. 1989.

[6] Callon, R., et al., “A Framework for
Provider-Provisioned Virtual Private
Networks,” (work in progress).

[7] DynaBone web pages –
www.isi.edu/dynabone

Many of the implications of the VI
architecture have resulted in related projects:
using recursion to support fault tolerant dynamic
routing on hidden VI layers (DynaBone), using
overlays to provide alternate geographic delivery
(GeoNet), and developing OS extensions to
support fine-grained per-overlay configuration
control (NetFS), as well as forming the basis of
the X-Bone overlay deployment and
management system [20][22].

[8] Eriksson, H., “MBone: The Multicast
Backbone,” Communications of the ACM,
Aug. 1994, pp.54-60.

[9] Fox, B, Gleeson, B., “Virtual Private
Networks Identifier,” RFC-2685,
September 1999.

[10] Gross, P., (ed), “Choosing a "Common
IGP" for the IP Internet,” RFC-1371,
October 1992.

There are a number of design decisions that
simplified the development of the VI. First, VIs
are based on IP, assuming IP and providing IP,
avoiding equivalent but less ubiquitous
alternatives of GRE, PPP, and the VPN-ID, all
under consideration for PPVPNs [6]. Using IP
results in using RFC1918-style addresses with
SITN avoidance, where addresses are not reused
where overlays share mutual resources [10][17].

[11] Jacobson, V., “Compressing TCP/IP
Headers,” RFC-144, January 1990.

[12] Lim, L., Gao, J., Ng, T., Chandra, P.,
Steenkiste, P., Zhang, H., “Customizable
Virtual Private Network Service with
QoS,” Computer Networks, July 2001, pp.
137-152.

[13] NetFS web pages – www.isi.edu/netfs

10

11

[14] Oram, A. (ed.), Peer-to-Peer: Harnessing
the Benefits of a Disruptive Technology,
O’Reilly, Sebastapol CA, 2001.

[15] Perkins, C., “IP Encapsulation within IP,”
RFC-2003, Oct. 1996.

[16] PlanetLab – www.planetlab.org

[17] Rekhter, Y., et al., “Address Allocation for
Private Internets,” RFC-1918, Feb. 1996.

[18] Savage, S., et al., “Detour: a Case for
Informed Internet Routing and Transport,”
IEEE Micro, pp. 50-59, v 19, n 1, Jan.
1999.

[19] Scott, C., Wolfe, P., Erwin, M., Virtual
Private Networks, O'Reilly & Assoc.,
Sebastapol, CA, 1998.

[20] Touch, J., “Dynamic Internet Overlay
Deployment and Management Using the X-
Bone,” Computer Networks, July 2001, pp.
117-135.

[21] Touch, J., Faber, T., “Dynamic Host
Routing for Production Use of
Developmental Networks,” Proc. ICNP '97,
Atlanta, Oct. 1997, pp. 285-292.

[22] X-Bone web pages – www.isi.edu/xbone

http://www.planetnet.org/
http://www.cc.gatech.edu/conferences/icnp97/
http://www.cc.gatech.edu/conferences/icnp97/

	Introduction
	The need to be virtual…

	VI Architecture
	Requirements
	Summary of VI Architecture
	Components
	Virtual Hosts
	Virtual Routers
	Virtual Links
	Advanced Issues

	Implication/Consequences
	Prior and related work
	Status and Future Work
	References

		2003-08-19T13:59:15-0700
	Lars Eggert
	I am a co-author of this document

