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Abstract – A Virtual Internet (VI) is an IP network 
composed of tunneled links among a set of virtual 
routers and virtual hosts. The architecture, like its 
virtual memory counterpart, provides an abstraction 
that hides the complexity of the underlying network 
and provides isolation-based protection that 
encourages resource sharing.  A VI completely 
decouples its component hosts and routers from the 
underlying network to support both sibling and 
recursive VIs and to allow a node to participate 
multiple times in a single overlay, known as 
revisitation. The VI architecture provides a consistent 
multihoming paradigm, including end-to-end 
overlays, naming and addressing, virtual host 
requirements, and virtual gateway requirements. 
Consequences of the architecture are presented, 
including basic implications on the underlying 
network and host operating system, as well as 
additional requirements and mechanisms needed to 
support recursion and revisitation. Several 
implementations based on this architecture are 
discussed that explore the capabilities of VIs, 
including automated deployment and management, 
recursion for fault tolerance, geographic delivery, 
and support for peer-to-peer systems. 

I. INTRODUCTION 

A Virtual Internet (VI) is a virtual version of 
the Internet in which virtual hosts and routers 
are connected by IP-encapsulation tunneled links 
over the existing Internet (Figure 1). A VI is an 
overlay network that rides on top of an IP 
network, and all the capabilities of the Internet 
in the overlay. VIs can provide security and 
isolation like VPNs, for whole virtualized 

networks rather than just remote hosts or 
subnets, unlike VPNs. 

VIs generalize the tunnel backbones that 
helped deploy multicast (M-Bone), IPv6 (6-
Bone), and Active Networks (A-Bone) [1][4][8]. 
Those backbones enabled new protocols to be 
tested and incrementally deployed on existing 
infrastructure. Unlike those interim solutions, 
VIs are intended as a more permanent capability, 
further enabling incremental tests, as well as to 
support persistent partial deployments of new 
capabilities where desired. 
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Ring VN 
 

                                                      

Figure 1 Multiple virtual Internets 

Like their virtual memory (VM) counterpart, 
VIs manage concurrent sharing of resources, 
provide protection, and present an abstraction of 
the underlying service. Each process on a host 
may participate in a different VI (Figure 2). 
Address spaces of VIs are managed to avoid 
overlap except where they explicitly share 
components (gateways). Applications can 
interact with simplified topologies, e.g., trees for 
DNS or rings for web caches, without requiring 
application participation in creating or managing 
those structures – identical to that provided by 
the Internet, in which the name resolution and 
forwarding are provided services. 

1 Effort sponsored by the Defense Advanced Research Projects 
Agency (DARPA) and Air Force Research Laboratory, Air Force 
Materiel Command, USAF, under agreements number F30602-98-
1-0200 entitled “X-Bone” and number F30602-01-2-0529 entitled 
“DynaBone”. The views and conclusions contained herein are 
those of the authors and should not be interpreted as necessarily 
representing the official policies or endorsements, either expressed 
or implied, of the Defense Advanced Research Projects Agency 
(DARPA), the Air Force Research Laboratory, or the U.S. 
Government. 
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User’s view of VIs 

The VI architecture provides new capabilities 
for virtual networks, including recursion and 
revistation. Recursion allows VIs to be stacked, 
providing new opportunities for fault tolerance 
and path diversity. Revisitation allows a single 
base network node to emulate multiple VI 
nodes, allowing a VI to emulate larger networks 
than the base on which they are deployed. 

The need to be virtual… 

VM provides a paradigm that decouples the 
process memory from physical memory. 
Processes view memory as a single linear 
address space, starting at zero. Programmers 
need not focus on page layout in memory 
frames, address translation, paging, or even 
swapping to disk to emulate larger memory 
spaces. Processes are protected from each 
other’s space, and space is allocated and 
managed by the operating system. 

Current networking, by contrast, is closer to 
pre-VM programming. Distributed systems are 
exposed to the underlying network topology, and 
programmers or applications manage tunnels 
directly. Address spaces can collide, and there is 
no effective way to emulate a larger topology. 
Overlays are manually configured, with no 
automation to clean up abandoned overlays. 

The VI architecture provides VM-style 
abstraction to networking, decoupling the virtual 
topology from the physical, and enabling 
automated coordination and management that 
avoids these pitfalls. Recall the star and ring 
overlays shown in Figure 1, and how they map 
onto the underlying network (shown in Figure 3 
and Figure 4).  

 
Map of star onto base 

Underlying nodes in the base network may act 
as virtual hosts (solid dots), virtual routers (solid 
rings), tunnel transits (dashed rings), and some 
do not participate at all (dotted rings). Note that 
some nodes in the base network participate in 
multiple ways, e.g., all nodes in the ring are both 
virtual hosts and virtual routers (circle around 
dot), and some are also tunnel transits. 

 
Map of ring onto base 

There are a number of overlay systems that 
address portions of the VI architecture, and 
others that justify the need for one. Some of the 
VI architecture is already represented by M-
Bone-style overlays and VPNs [8][19]. The 
broader end-to-end networking of VIs 
complements the backbone focus of these 
systems, and builds on the work of the X-Bone, 
VNS, and RONs [2][12][20]. The abstract nature 
of the VI and the presence of a fall-back base 
network enable automated VI management. 

The VI also supports recursion and 
revisitation and resolves the impact of overlays 
and these extensions on the host and router 
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requirements of the current Internet. Some 
systems recapitulate these requirements at the 
application layer (e.g., peer-to-peer networks), 
while others are limited to simplified 
deployments to avoid those issues (typical 
VPNs) [14]. Finally, few of these systems are 
interoperable or are advocated as permanent 
extensions to the Internet architecture. 

This paper presents the VI architecture and 
discusses its virtual host, virtual router, and 
virtual link components, and the implications of 
virtualization on host and router requirements. 
New mechanisms that support new capabilities 
are presented, including a system that enables 
recursion. Finally, the architecture is applied to 
develop new services such as geographic 
delivery and recursion for fault tolerance, as 
well as to enable automated network 
management. 

II. VI ARCHITECTURE  

The VI extends the Internet model of 
networking, composed of data sources and sinks 
called hosts, data transits called routers 
(originally called gateways), and links between 
them [3][5]. In the Internet architecture, links are 
essentially static; link creation and tear-down 
occurs during network deployment, whereas 
links are configured up or down on shorter 
timescales. Forwarding is the process of 
deciding the next-hop destination of packets 
traversing a transit, and routing is the system of 
information exchange and computation that 
determines forwarding tables. 

A VI virtualizes all these components. A 
single network node (host or router) may 
participate as virtual host, virtual router, or 
multiples of each simultaneously. Virtual links 
are part of VI deployment, and whether a link is 
available or not can affect VI routing. Note that 
VI links are not deployed as a result of routing 
computations; the act of provisioning a VI 
network and the routing within are decoupled.  

The specifics of the VI model begin with its 
requirements and assumptions. The architecture 
is then presented, including details of its 
components and their characteristics. The 
implications of these decisions are addressed in 

Section III. The following describes the 
requirements and architecture of a system which 
has been implemented in FreeBSD and Linux. 
Details of the implementation are discussed 
throughout, and summarized in Section V. 

II.1. Requirements 

First and foremost, a VI is a network, a 
complete topology consisting of virtual hosts 
and virtual routers. This is distinct from typical 
VPNs, which tether individual remote hosts to 
an existing private network, or tie together two 
separate pre-existing networks. Other systems 
focusing on backbones include VNS, PPVPN, 
and many of the original overlay backbones (M-
Bone, 6-Bone, A-Bone). It is critical to include 
hosts in the architecture; otherwise, key issues in 
addressing and source address selection are 
obviated.  

VI further inherits all the conventional aspects 
of the current Internet, including the previous 
definitions of hosts, routers, and links, as well as 
the assumption of conventional multihop paths 
and unique (at least within an overlay) endpoint 
addresses. These assumptions are the result 
virtualizing the underlying network – the 
Internet. A VI runs over the Internet, and 
provides an IP overlay with all the capabilities 
of the existing Internet. 

The overall goal of the VI is to provide an 
environment that applications and routing cannot 
distinguish from the existing underlying 
Internet. The resulting system thus avoids the 
need to reinvent network, transport, and 
application protocols, or to reimplement routing 
and forwarding algorithms, as with application-
layer peer-to-peer systems [14]. It also enjoys 
the scalability of hop-by-hop forwarding using 
local decisions that link-layer emulation does 
not. 

The VI includes additional assumptions which 
are not strictly required, but desired for a 
consistent and generic architecture. VI links use 
IP in IP encapsulation to avoid the need for new, 
non-ubiquitous protocol support [15]. Security – 
the P in VPN – is orthogonal, a property of links 
that can be enabled or disabled without effect on 
the rest of the network. The purpose of VI 
security is to preserve the contents of links, to 
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protect the network layer, including routing 
exchanges. Additional end-to-end application 
security is provided by existing Internet 
transport or application layer protocols.  

Finally, a VI assumes concurrence, recursion, 
and revisitation. Individual components can be 
members of multiple VIs concurrently. A VI can 
be deployed on top of an existing VI, just as on a 
base Internet, where the upper VI is a subset of 
the nodes of the lower network. Individual 
components can participate multiple times in a 
single VI overlay. All these properties ensure 
consistency and attempt to create the most 
flexible and capable generic VI architecture. 

Summary of VI Architecture 

The VI architecture can be summarized by a 
few basic principles: 

1. VIs are composed of VRs and VHs 
connected by IP encapsulated tunnel 
links, emulating the Internet architecture 

a. Virtual hosts are data sources 
and sinks; only VHs increase or 
decrease the number of headers 
on a packet (i.e., encapsulate or 
decapsulate) 

b. Virtual routers are data transits; 
only VRs transit packets 
without changing the number of 
headers 

2. VIs are completely virtual, decoupled 
from the base network on which they are 
deployed 

a. VIs support concurrence 

b. VIs support revisitation 

3. VIs recurse by emulating a VI network 
as a VR in the base network 

a. In control recursion the inner 
network has unbound upper VR 
interfaces which are the 
interfaces of the emulated VR in 
the base network 

b. In network recursion the inner 
network has phantom VHs 
which are the interfaces of the 
emulated VR in the base 

network; these phantom VHs 
add and remove the headers of 
the recursive VI 

The details of the architecture follow from 
these basic principles. Notably, even some of 
these principles (the a,b items) follow from the 
main axioms (1,2,3). 

II.2. Components 

The VI architecture is composed of virtual 
hosts, routers, and links, using a variant of 
unique endpoint addresses.  VI hosts and routers 
develop and extend the Internet’s currently 
limited multihoming capability to support 
concurrent VI participation. VI links incorporate 
two layers of tunneling to support revisitation, 
representing separate virtual link and network 
layers. Recursion is supported, both of 
configuration and deployment, as well as true 
network-on-network recursion. 

Nodes of a VI overlay use unique endpoint 
addresses for interfaces on both hosts and 
routers, as with the conventional Internet. 
Addresses within each overlay are unique, but 
addresses may be reused in another overlay 
provided the two overlays share no nodes in 
common in the underlying network. This is 
known as “ships in the night” (SITN) 
addressing, after the term used to describe 
protocols that coexist but do not intermingle 
[10]. These addresses are managed by a separate 
automated system that assists in the deployment 
of overlays. 

Other systems use separate VPN identifiers to 
distinguish IP address spaces in separate 
overlays [9]. This assumes that the VPN ID is 
itself unique, or at least SITN-unique, where no 
two overlays sharing a node use the same VPN 
ID. The VI architecture assumes the use (and 
reuse) of RFC-1918 private address space, 
because the effort of maintaining SITN-unique 
VPN IDs is identical to that of maintaining 
SITN-unique addresses, and the latter can use 
existing IP encapsulation mechanisms [15][17]. 
Using IP encapsulation further allows VIs to use 
existing implementations of application, 
transport, and network protocols, and existing 
implementations of forwarding and routing 
algorithms. 
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II.2.1.Virtual Hosts Partitioning supports both concurrency and 
revisitation. Sets of interfaces associated to each 
overlay enforce per-overlay routing protocol 
exchanges. This restores the meaning of the 
ubiquitous universal inaddr_any on multihomed 
hosts, where it must now be associated to an 
overlay, but need not specify individual 
addresses therein. The effects of multihoming 
and partitioning extend throughout the VH and 
VR, and are also discussed in Section III. 

Virtual hosts (VH) are sources and sinks of 
traffic on a VI overlay, and virtual routers (VR) 
are transits on a VI overlay. Being a VH or VR 
is a property of a node of the underlying 
network, whether host or router. Those nodes 
may participate as multiple VHs and/or VRs in a 
single overlay, or may participate as VHs and/or 
VRs in multiple concurrent overlays. 
Multihoming is thus a critical component of the 
overall architecture, as it relates to both hosts 
and routers [5]. 

The use of multihoming requires revisiting the 
strong vs. weak end system model [5]. The 
model determines whether addresses refer to 
interfaces or to the host to which they attach. In 
the strong model, addresses refer to the 
interface, and incoming packets are checked to 
see if they match the address of the interface on 
which they arrive (Figure 6, left). If they do not, 
they are discarded. This is seldom used in the 
Internet at the network layer, though it pervades 
the link layer, e.g., Ethernet packets are accepted 
only if they are addressed to the arriving 
interface. The weak model allows arriving 
packets to match any interface on the host 
(Figure 6, right).  

 Multihoming in the VI architecture extends 
the concept of an embedded virtual router, 
developed earlier to support hosts being on both 
experimental and production networks [21].  In 
this earlier model, all host traffic is directed 
through a phantom internal router, allowing end-
to-end traffic to be forwarded through alternate 
outgoing host interfaces while using a single 
source address for traffic (Figure 5). For the VI, 
this implies that all VHs include VR capabilities 
and are full participants in the routing protocol 
of the overlay. This challenges certain 
implementations of routing protocols on base 
network hosts, such as gated, mrtd, and zebra. Although Internet hosts tend to have weak 

network layer addressing, they also tend to have 
strong link layer addressing. The VI architecture 
recognizes this duality, and includes both a 
virtual link layer and a virtual network layer. 
The former uses the strong model and the latter 
the weak. The strong model is required for 
revisitation. 

NIC  Host 
Phantom 

VNIC Router 
NIC 

 
Figure 5 

Figure 6 

X Y X Y
to Y Host as router & internal host to Y 

➼Multihoming is required for all components of 
the VI, because even a base host with a single 
VH is necessarily a member of at least two 
networks – the Internet and the VI overlay. As a 
result, hosts need routing capabilities, and both 
VHs and VRs need to partition the interfaces  
into sets. This latter capability is required for 
routing protocols to exchange reachability 
information among the (virtual) interfaces of a 
single VI overlay, but to also keep the routing of 
different VIs separate. 

Strong Weak  
Strong vs. weak model 

Other VPN protocols (GRE, PPP, PPTP, etc.) 
encode the virtual link and virtual network 
information inconsistently, both in the IP and 
transport layer headers. VI encodes them 
separately in distinct IP headers, allowing 
different layers to enforce the appropriate 
mechanism as necessary. The VH uses 
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Figure 7 VI hop-by-hop header rewriting forwarding rules to implement the two-layer 
encapsulation by weaving packets among 
tunneling interfaces. The current VI 
implementation of strong host packet processing 
uses firewall rules to enforce strong host 
behavior on link-layer tunneling interfaces.  

The packet must be wrapped in an outermost 
header that indicates the source and sinks of the 
tunnel using the base network addresses, e.g., 
X Y, then Y Z. Note that this outer header is 
rewritten on each hop, like a link layer. 

II.2.2.Virtual Routers In the above example, the link layer addresses 
(Q, R, S, T) are not strictly needed. However, 
when revisitation is considered, these link 
addresses are required to distinguish between the 
Nth and N+1st visit to a node. Such revisitation is 
show later in Figure 11. Support for revisitation 
requires that Internet hosts (as noted before) and 
routers support forwarding based on the 
incoming interface, as well as the packet header.  

Virtual Routers (VRs) are similar to their base 
network counterparts, where different overlays 
are similar to non-interacting autonomous 
system domains (ASs). Routing information is 
exchanged among the interfaces of a VI overlay, 
but not between overlays or with the base 
network. Forwarding is similarly partitioned, 
where packets arriving on the interfaces of one 
overlay go out interfaces of that overlay or are 
dropped. Having a separate virtual link and virtual 

network layer further allows IPsec to be 
deployed on the virtual link layer independent of 
application IPsec at the virtual network layer or 
base network IPsec in the outermost base packet 
header.  

Given SITN IP addressing, forwarding 
partitioning is provided by avoiding default 
routes, or by using forwarding mechanisms that 
permit multiple independent defaults (i.e., that 
explicitly support grouping interfaces into sets). 
It is further useful if multiple routing daemons 
(one per VPN) can coexist, or if routing 
configuration supports explicit grouping of 
interfaces. 

II.2.4.Advanced Issues 

There are additional considerations to 
developing a VI architecture. There are several 
details involving recursion and revisitation and 
complexities with IPsec interactions. A system 
for automating overlay deployment and a 
language for describing VIs are also discussed. 
Finally, there are issues with scalability, notably 
affecting the performance of recursive VIs that 
can be effectively stacked. 

II.2.3.Virtual Links 

Virtual links encapsulate packets in additional 
IP headers. The VI architecture uses two layers 
of encapsulation for each virtual link, to support 
revisitation. Consider a VI packet, which 
consists of data inside an overlay endpoint 
header. The innermost header indicates the 
source and sink addresses on the overlay, e.g., 
A D in Figure 7. In that figure, base addresses 
X,Y, Z are used for the end hosts and router, and 
addresses Q, R, S, T are used for overlay links 
(OL), and A, B, C, D are used for overlay 
network addresses (ON). 

There are two distinct forms of recursion that 
that the VI architecture supports: control 
recursion and network recursion (Figure 8). Both 
are called recursion rather than stacking because 
there is no strict limit on layering; 
architecturally, both are recursive structures. 

 

DATA 

DATA A  D Q  R X  Y DATA A  D S T Y Z

ON-D ON-A 
OL-T OL-Q 
B-Z 

HOST 
B-X 

HOST 

DATA A  D A  D

ON-B ON-C 
OL-R OL-S 

B-Y 
ROUTER 
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Figure 8 

Figure 9 

Two types of recursion 

Control recursion is akin to compile-time 
recursion of the VI description language. It 
allows a compact symbolic representation to be 
expanded during deployment, allowing divide-
and-conquer network management. Network 
recursion is true stacking of a VI on another VI, 
where packets on the uppermost VI have 
additional layers of header encapsulation when 
traversing inside the upper VI. Network 
recursion allows intermediate VIs to support 
advanced network capabilities and provide them 
as a service to the upper VI, e.g., dynamic 
routing can be used to support fault tolerance, 
even when the uppermost VI considers its 
overlay statically routed. 

Figure 8 depicts both kinds of recursion. In 
this figure, hosts are squares and routers are 
circles. Each component has a network 
management daemon, shown as a triangle. One 
example VI architecture uses a controller 
daemon per VI, shown as a checkered diamond. 

The figure shows how the VI architecture 
represents recursive embedded VIs as a VR in 
the upper-layer VI. In control recursion, the 
management daemon of that router is really the 
top-half of the controller daemon of the recursed 
VI (left circle). The interfaces of that router 
(edge of the circle) are unbound interfaces of 
routers inside the recursed VI. The result is 
divide-and-conquer deployment of a flat 
network structure where the internal recursion 
topology is visible throughout the upper VI. 
Packets traversing a control recursion VI have 
the same number of headers on links inside the 
recursion as outside the recursion. 

In network recursion the recursed VI (right 
circle) is a VI layered on top of the base VI also 

modeled as a VR. It has a similar controller 
daemon, where the top-half of the recursive VI 
controller daemon plays the role of a router 
management daemon in the base network. 
However, packets inside a network recursion VI 
have additional headers that represent the hops 
inside the recursion; these hops are not visible in 
the base network. To the base network, the 
recursed VI looks exactly like a single virtual 
router.  NetworkControl / deployment 

Note that the VI models recursion of both 
kinds as a router, in the former case as a router 
with unbound interfaces, and in the latter case, 
as a router in the base network whose interfaces 
are phantom VHs in the recursive VI (shaded 
boxes in right circle). The network recursive VI 
represents its edges as hosts because hosts are 
the only component of a VI where a packet has a 
different number of headers when arriving (e.g., 
from an application) vs. leaving (e.g., out to the 
network). The hosts are phantom because they 
do not exist in the inner network; they exist 
solely to represent the interfaces of the VR in the 
lower VI. 

As noted earlier, VI packets include two 
overlay headers – one for endpoint network 
addresses, and one for hop-by-hop link 
addresses (Figure 9). The application sets the 
overlay endpoint (typically destination; the 
source is added automatically), and the VI 
configuration sets the overlay link and base 
Internet addresses. When VIs are stacked, at first 
it would appear that two additional layers of 
headers would be required for each layer or 
recursion. However, the overlay link of the 
upper VI also serves as the overlay network of 
the lower VI, as shown in Figure 10. This reuse 
is possible because virtual interfaces use exactly 
one address, and addresses are never reused 
where overlays overlap (SITN addressing). 
Reuse of the base network address in similar 
fashion is not possible because base interfaces 
are not necessarily exclusive to a single base 
address. 

O-Link Base InetData O-End 
 

Basic VI header 
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There are no particular limits to the scalability 
of the VI architecture. Control recursion allows 
divide-and-conquer recursive deployment of 
large-scale flat topologies, and network 
recursion allows similarly scalable deployment 
of layered networks. The first VI layer adds two 
IP headers each of which may be compressed 
down to a single byte for frequent traffic [11]. 
Each header decreases the effective MTU of the 
underlying network, but with fragmentation this 
can be ignored – except for its effect in lossy 
environments. When upper layer VI packets are 
fragmented to fit into lower layer MTUs, and 
fragments are lost, the VI becomes very 
inefficient and may be effectively disabled. 
Tests to determine the limit of effective 
recursion are underway, and have indicated that 
there is little effect for the first two layers of 
stacking, even though the base MTU has 
decreased by over 10% (by 60 bytes). The focus 
of the VI is capability over performance, 
verified by experience with a variety of users. 

Ovl Base InetOvl Data 
Ovl Ovl  

Figure 10 

Figure 11

VI on VI header – overlapping 
addresses 

Revisitation allows a VI to be completely 
decoupled from the components of the base 
network. Virtual memory already provides this 
capability, one which has proven invaluable in 
supporting virtual machines, as well as 
emulating large-scale systems in software. 
Similarly, a VI aims to allow overlay 
networking to be as flexible. 

In revisitation, a single node participates 
multiple times or ways in a single overlay. 
Figure 11 shows a VI (top) and how it is mapped 
onto an underlying network. In this case, VH A 
is mapped onto base host X, and VRs C and E 
are mapped onto base router Z. Base router Y 
participates three times – once as VH F, and 
twice as VRs B and D. Packets sent from A to F 
will enter Y three times; Y needs a way to 
distinguish the various visits. The overlay 
endpoint addresses do not change (A to F), and 
for some paths even the hop-by-hop base 
addresses do not change (Z to Y). Virtual link 
addresses allow Y to distinguish between visits 
from, e.g., hops C’ to D’ from E’ to F’ (/’/ 
indicating virtual link). 

III. IMPLICATION/CONSEQUENCES 

The VI augments the Internet architecture 
with support for virtualization. The implications 
of this augmentation are discussed, including the 
effect on network architecture, component 
architecture, on protocols, as well as the 
opportunities it affords for automated network 
management.  

 

A F E B C D 
Network nodes require a system for 

associating sets of network interfaces of 
respective VIs with each other. Routers need to 
contain routing protocols within each component 
virtual router, and virtual hosts need to map 
inaddr_any to meaningful subsets of addresses.  

Y Z X 
B CA 

D EF 

There are other issues of what is called 
“network reentrancy” – aspects of networked 
applications that require special attention to 
support concurrency. Most can be provided by 
judicious programming; they include: 

 Revistation (VI above, as deployed 
including revistation below) 

A language is under development that 
describes VIs and enables their automated 
deployment. It builds on the work of the X-Bone 
and VNS, both of which included languages for 
describing overlays [12][20]. The VI language 
has additional capabilities for both forms of 
recursion as well as revisitation. 

1. avoid use of inaddr_any; bind to explicit 
lists of addresses instead 

2. avoid use of directory names or login names 
that cannot be overridden, e.g., log files, 
configuration files, user IDs/group IDs, etc. 
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3. bind only to the most specific addresses and 
ports possible 

Providing subsets of addresses also may 
require providing authorization to modify only 
one of the subset, i.e., fine-grained configuration 
control. 

As previously noted, revisitation requires two 
layers of encapsulation in which one layer is 
strong and one weak. Forwarding must enforce 
the strong layer constraints, which typically 
requires policy routing, where the incoming 
interface is context for the subsequent 
forwarding decision. In current host operating 
systems, policy routing can be emulated using 
firewall rules, but this should be replaced with 
an integral policy routing and forwarding 
framework.  

Network recursion requires a new protocol, 
one which combines some of the aspects of BGP 
and others of ARP. VI recursion models the 
upper VI as a virtual router in the lower VI. 
When packets arrive at that router in the lower 
VI, they expect to exit on the appropriate 
interface; this function is normally internal to the 
router, and performed internally by a mechanism 
akin to ARP.  

Inside the recursive VI, packets are arriving at 
a VH on one side of the network and must be 
delivered to a particular VH on the other side – 
the exit-VH. Determining the proper exit-VH in 
a recursive VI is similar to determining the exit 
router of an AS using BGP. As a result, network 
recursion requires a merged variant of BGP and 
ARP. Preliminary analysis indicates that this is 
less of a hack than a generic mechanism that can 
be used to describe a variety of ‘successive 
recursive resolution’ systems, including Google, 
the DNS, IP forwarding, BGP routing, and ARP. 

Finally, the VI enables extensive automation, 
and benefits greatly from its use. VIs are built on 
base IP networks, so they can assume underlying 
network connectivity for management and 
control. Coordinated systems for configuring 
VIs ensure SITN addressing to enable effective 
use (and reuse) of RFC1918 addresses, allowing 
virtualization without requiring support for new 
protocols [10][17]. As a result, VIs support 
existing applications, protocols, and operating 

systems with modifications needed only to 
support multi-pass encapsulation and 
forwarding. 

IV. PRIOR AND RELATED WORK 

Virtual Internets are a general virtual 
extension to the basic Internet architecture 
[3][5]. They virtualize all components of the 
Internet, providing the same functionality inside 
each virtual layer as exists in the base Internet.  

VPNs extend portions of existing networks to 
remote sites, usually incrementally [19]. They 
do not deploy a complete, virtualized network, 
but rather focus on attaching hosts to existing, 
private networks over the public Internet. VPNs 
may use tunnels, or may use other means, e.g., 
tags, to separate private traffic from public, and 
lack support for virtual routing. PPVPNs are the 
complement of a VPN [6]; they consist of a 
virtual core with translation boxes at the 
periphery. The core supports virtual routing, but 
hosts are not part of the virtual network, and 
cannot participate in multiple PPVPNs 
concurrently.  

PPVPNs also include VLANs, using a link 
layer to develop a virtual infrastructure. Link 
layers are notoriously non-scalable, imposing 
limits on response time and often requiring 
broadcast emulation for address discovery. By 
contrast, network layer virtual networks avoid 
those issues by using hop-by-hop forwarding, 
well-developed routing algorithms, and 
distributed address translation mechanisms (e.g., 
DNS). 

Peer networks, as was noted earlier, 
recapitulate network architectures at the 
application layer [14]. They use application 
layer tunnels, and provide virtual routing at the 
application layer. Because each peer network is 
based on a separate architecture, it is difficult for 
a single application to participate in multiple 
peer networks. By contrast, a virtual Internet 
uses the same API at all layers, allowing a single 
application to use whatever layer is needed.  

Virtual Internets are generalizations of the 
static, manually-deployed m-Bone, A-Bone, and 
6-bone tunneled backbones [1][4][8]. VIs 
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The VI architecture avoids issues of 
optimization, e.g., to use overlays to provide 
alternate routing services, as done with RONs 
and Detour [2][18]. This is a consequence of 
being truly virtual, where there can be no 
assurance that the path taken by the overlay is 
any better than the path of the underlying base 
network. 

emphasize protection and abstraction, rather 
than optimization, as with RONs and Detour 
[2][18].  VI optimization can be achieved by 
replacing a portion of the general purpose 
architecture, just as a realtime OS can be 
achieved by replacing the scheduler in a 
conventional OS. 

VIs enable automated support for multiple, 
concurrent virtual networks. They have already 
been used to support shared testbeds, automated 
deployment of applications, and management of 
overlapping address spaces, some of the goals of 
PlanetLab [16]. 
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