
 
 
 
 
 

BACKGROUND USE OF IDLE RESOURCE CAPACITY 
 
 
 
 
 

by 
 
 

Lars René Eggert 
 
 
 
 

 
 

 
 
 

A Dissertation Presented to the 
FACULTY OF THE GRADUATE SCHOOL 

UNIVERSITY OF SOUTHERN CALIFORNIA 
In Partial Fulfillment of the 

Requirements for the Degree 
DOCTOR OF PHILOSOPHY  

(COMPUTER SCIENCE) 
 
 
 

May 2004 
 
 
 
 
 
 

   Copyright 2004      Lars René Eggert 



 
ii



 
iii

Table of Contents 

Table of Contents...........................................................................................................iii 

List of Figures................................................................................................................ ix 

Abstract........................................................................................................................ xiv 

1. Introduction ............................................................................................................. 1 

1.1 Key Issues...................................................................................................... 3 

1.2 Related Approaches ....................................................................................... 5 

1.3 Outline ........................................................................................................... 8 

2. Overview ............................................................................................................... 11 

2.1 Motivation.................................................................................................... 15 

2.2 Applications and Benefits............................................................................ 18 

2.2.1 Prefetching and Caching.................................................................... 18 

2.2.2 Network Service ................................................................................ 24 

2.2.3 Disk Service....................................................................................... 27 

2.2.4 Application-Layer Uses..................................................................... 29 

2.3 Challenges.................................................................................................... 30 

2.3.1 Scheduler Properties.......................................................................... 33 

2.3.2 System Architecture........................................................................... 36 

2.3.3 Preemption Cost ................................................................................ 40 

2.3.4 Tunability........................................................................................... 43 

2.3.5 Cache Pollution vs. Preload Effect .................................................... 44 



 
iv

2.3.6 Isolation of Side Effects .................................................................... 45 

2.4 Summary...................................................................................................... 47 

3. Preliminary Work .................................................................................................. 48 

3.1 Application-Level Idletime Networking...................................................... 49 

3.1.1 Application-Level Idletime Mechanisms .......................................... 51 

3.1.2 Server Bottleneck Resource .............................................................. 54 

3.1.2.1 10Mb/s Ethernet ................................................................. 55 

3.1.2.2 100Mb/s Ethernet ............................................................... 56 

3.1.3 Experimental Evaluation ................................................................... 57 

3.1.3.1 10Mb/s Ethernet ................................................................. 58 

3.1.3.2 100Mb/s Ethernet ............................................................... 61 

3.1.4 Discussion.......................................................................................... 64 

3.2 Kernel-Level Idletime Networking.............................................................. 66 

3.2.1 Effect of CPU Scheduling on Network Transmissions ..................... 67 

3.2.1.1 Experimental Setup ............................................................ 69 

3.2.1.2 Experimental Evaluation .................................................... 71 

3.2.2 Kernel-Level Idletime Mechanism.................................................... 73 

3.2.2.1 Design Goals ...................................................................... 74 

3.2.2.2 Kernel-Level Design .......................................................... 76 

3.2.2.3 Discussion........................................................................... 79 

3.2.3 Experimental Evaluation ................................................................... 80 

3.2.3.1 Unlimited Background Load .............................................. 80 



 
v

3.2.3.2 Limited Background Load.................................................. 82 

3.2.4 Discussion.......................................................................................... 84 

3.3 Summary...................................................................................................... 85 

4. Idletime Scheduling with Preemption Intervals .................................................... 87 

4.1 Formal Specification.................................................................................... 90 

4.1.1 Definitions ......................................................................................... 91 

4.1.2 Operations.......................................................................................... 92 

4.1.3 Axioms .............................................................................................. 93 

4.2 Idletime Properties....................................................................................... 94 

4.2.1 Prioritization ...................................................................................... 95 

4.2.1.1 Temporally Shared Resource.............................................. 96 

4.2.1.2 Spatially Shared Resource.................................................. 97 

4.2.2 Preemptability.................................................................................... 97 

4.2.2.1 Temporally Shared Resources ............................................ 99 

4.2.2.2 Spatially Shared Resources ................................................ 99 

4.2.3 Relaxed Work Conservation ............................................................ 100 

4.2.4 Isolation ........................................................................................... 106 

4.3 Discussion.................................................................................................. 111 

4.3.1 Preemption Interval Length............................................................. 112 

4.3.2 Queue Hierarchies ........................................................................... 117 

4.4 Quantitative Analysis................................................................................. 120 

4.4.1 Performance Expectations ............................................................... 126 



 
vi

4.4.2 Disk Drive ....................................................................................... 130 

4.4.3 Network Interface............................................................................ 132 

4.5 Summary.................................................................................................... 135 

5. Implementation.................................................................................................... 137 

5.1 Scheduler Variants ..................................................................................... 137 

5.2 Implementation Overview ......................................................................... 143 

5.3 Idletime Disk Service ................................................................................ 146 

5.4 Idletime Network Service .......................................................................... 151 

5.4.1 Networking Overview ..................................................................... 151 

5.4.2 Prototype Implementation ............................................................... 154 

5.5 Implementation Considerations ................................................................. 157 

5.6 Summary.................................................................................................... 159 

6. Evaluation............................................................................................................ 160 

6.1 Disk Scheduler Evaluation ........................................................................ 165 

6.1.1 Random Access ............................................................................... 165 

6.1.2 Sequential Access ............................................................................ 170 

6.1.3 Discussion........................................................................................ 174 

6.2 Network Scheduler LAN Evaluation......................................................... 176 

6.2.1 UDP Foreground Traffic.................................................................. 178 

6.2.1.1 Foreground UDP vs. Background UDP ........................... 178 

6.2.1.2 Foreground UDP vs. Background TCP ............................ 180 

6.2.2 TCP Foreground Traffic .................................................................. 183 



 
vii

6.2.2.1 Foreground TCP vs. Background UDP ............................ 183 

6.2.2.2 Foreground TCP vs. Background TCP............................. 185 

6.3 Network Scheduler WAN Evaluation ........................................................ 187 

6.3.1 100Mb/s Baseline ............................................................................ 189 

6.3.2 100Mb/s with 10ms Delay............................................................... 192 

6.4 Network Scheduler Discussion.................................................................. 196 

6.5 Experimental Limitations .......................................................................... 198 

6.6 Summary.................................................................................................... 199 

7. Discussion ........................................................................................................... 201 

7.1 Overview.................................................................................................... 201 

7.1.1 Measured vs. Predicted Performance .............................................. 203 

7.1.1.1 Gigabit LAN..................................................................... 204 

7.1.1.2 Disk Drive ........................................................................ 205 

7.1.2 Effects of Preemption Interval Length ............................................ 207 

7.1.3 Impact of the RTT on Foreground TCP........................................... 210 

7.1.4 Congestion Control in the Background ........................................... 211 

7.1.5 Effects of Speculative Optimizations .............................................. 213 

7.2 Future Work ............................................................................................... 214 

7.2.1 Idletime Scheduler Extensions ........................................................ 215 

7.2.2 Automatic Preemption Interval Tuning ........................................... 219 

7.2.3 Spatially Shared Resources ............................................................. 220 

7.2.4 Idletime Networking Improvements................................................ 222 



 
viii

7.3 Summary.................................................................................................... 223 

8. Related Work ....................................................................................................... 225 

8.1 Realtime Systems....................................................................................... 225 

8.1.1 Examples ......................................................................................... 226 

8.1.2 Discussion........................................................................................ 228 

8.2 Idletime Execution..................................................................................... 232 

8.2.1 Process Migration............................................................................ 233 

8.2.2 Data Migration................................................................................. 235 

8.2.3 Speculative Execution in Hardware ................................................ 236 

8.2.4 Speculative Execution in Software.................................................. 238 

8.3 Isolation Techniques .................................................................................. 239 

8.3.1 Database Concurrency Control........................................................ 241 

8.3.2 Discussion........................................................................................ 242 

8.3.2.1 Processes as Transactions ................................................. 243 

8.3.2.2 Concurrency Control for State Merging........................... 244 

8.4 Priority Schemes........................................................................................ 247 

9. Conclusion........................................................................................................... 252 

Bibliography ............................................................................................................... 256 



 
ix

List of Figures 

Figure 1.1. Miniaturization of microprocessors (left, source: Intel) and 
storage systems (right, source: StorageTek).Error! Bookmark not defined. 

Figure 2.1. Storage hierarchy..................................................................................... 18 

Figure 2.2. Queues involved in network communication over TCP. ........................ 37 

Figure 2.3. Queues involved in network communication over TCP, showing 
implicit processing priorities in UNIX. .................................................. 39 

Figure 2.4. Preemption cost due to the presence of idletime use (bottom) 
compared to the non-idletime case (top)................................................. 40 

Figure 3.1. HTTP network throughput (left) and server CPU utilization 
(right) for both 10Mb/s and 100Mb/s Ethernet....................................... 56 

Figure 3.2. Normalized median foreground response times (with first and 
third quartiles) for the baseline case and three different 
application-level idletime mechanisms over 10Mb/s Ethernet; 
both under light and heavy foreground load. .......................................... 60 

Figure 3.3. Normalized median foreground response times (with first and 
third quartiles) for the baseline case and three different 
application-level idletime mechanisms over 100Mb/s Ethernet; 
both under light and heavy foreground load. .......................................... 63 

Figure 3.4. Normalized mean throughput with 95% confidence intervals of 
a foreground sender under unlimited load in the basic case (No) 
and with two CPU-based idletime networking mechanisms 
(Nice and POSIX), using TCP (left graph) and UDP (right 
graph). ..................................................................................................... 70 

Figure 3.5. Normalized mean throughput with 95% confidence intervals of 
a foreground sender under bursty load in the basic case (No) and 
with two CPU-based idletime networking mechanisms (Nice 
and POSIX), using TCP (left graph) and UDP (right graph). ................. 72 

Figure 3.6. Network stack queuing and processing................................................... 74 

Figure 3.7. Normalized mean throughput with 95% confidence intervals of 
a foreground sender under unlimited load in the basic case (No) 



 
x

and with a kernel-level idletime mechanism (ITN), using TCP 
(left graph) and UDP (right graph). ........................................................ 80 

Figure 3.8. Mean foreground (light gray) and background (dark gray) 
throughputs with 95% confidence intervals under unlimited 
background load in the baseline case (Just FG), without 
idletime scheduling (No), and with a kernel-level idletime 
networking mechanism (ITN). Left graph shows TCP 
foreground throughputs, right graph UDP foreground 
throughputs. ............................................................................................ 81 

Figure 3.9. Normalized mean throughput with 95% confidence intervals of 
a foreground sender under bursty load in the basic case (No) and 
with a kernel-level idletime mechanism (ITN), using TCP (left 
graph) and UDP (right graph). ................................................................ 82 

Figure 3.10. Mean foreground (light gray) and background (dark gray) 
throughputs with 95% confidence intervals under bursty 
background load in the baseline case (Just FG), without 
idletime scheduling (No), and with a kernel-level idletime 
networking mechanism (ITN). Left graph shows TCP 
foreground throughputs, right graph UDP foreground 
throughputs. ............................................................................................ 83 

Figure 4.1. Temporally shared resource without (left) and with 
prioritization (right). ............................................................................... 95 

Figure 4.2. Spatially shared resource without (left) and with prioritization 
(right). ..................................................................................................... 96 

Figure 4.3. Temporally shared resource without (left) and with 
preemptability (right). ............................................................................. 99 

Figure 4.4. Spatially shared resource without (left) and with preemptability 
(right). ................................................................................................... 100 

Figure 4.5. Scheduler with prioritization and preemptability, incurring 
preemption overhead............................................................................. 102 

Figure 4.6. Idletime scheduler with prioritization and preemption interval............ 104 

Figure 4.7. Idletime scheduler with prioritization and short preemption 
interval, incurring preemption overhead............................................... 105 



 
xi

Figure 4.8. Shared operating system state (left) and virtualized operating 
system state (right)................................................................................ 106 

Figure 4.9. Foreground update and state propagation (left); idletime state 
commit at finish and propagation (right). ............................................. 110 

Figure 4.10. Bounded preemption cost through preemption intervals. ..................... 113 

Figure 4.11. Long starvation of idletime processing caused by long 
preemption intervals.............................................................................. 114 

Figure 4.12. Idletime worst-case scenario................................................................. 115 

Figure 4.13. Operation of priority (left) and idletime schedulers (right) in a 
hierarchy................................................................................................ 118 

Figure 4.14. Analysis configuration. ......................................................................... 120 

Figure 4.15. Effects of preemption interval length when preemption intervals 
start at the beginning of foreground requests........................................ 122 

Figure 4.16. Surface plot of an example predictor function (left) and its 
corresponding contour plot (right). ....................................................... 128 

Figure 4.17. Overview of the expected performance behavior for an idletime 
scheduler. .............................................................................................. 129 

Figure 4.18. Baseline read performance of a disk drive without idletime 
presence................................................................................................. 130 

Figure 4.19. Predicted foreground (left) and background (right) performance 
of an idletime disk scheduler................................................................. 131 

Figure 4.20. Baseline UDP performance of a network interface without 
idletime presence. ................................................................................. 132 

Figure 4.21. Predicted foreground (left) and background (right) performance 
of an idletime network scheduler with UDP traffic. ............................. 133 

Figure 4.22. Visualization of the preemption interval range shown in Figure 
4.21 (right) compared to the overview from Figure 4.17 (left). ........... 134 

Figure 5.1. Idletime state machine; adjacency matrix template. ............................. 137 

Figure 5.2. Idletime state machine with initial constraints...................................... 138 



 
xii

Figure 5.3. Idletime state machine with additional constraints. .............................. 139 

Figure 5.4. State machine after third set of constraints. .......................................... 140 

Figure 5.5. Four possible variants of the idletime state machine. ........................... 141 

Figure 5.6. Variant of the idletime scheduler chosen for implementation. ............. 142 

Figure 5.7. FreeBSD kernel I/O overview. Adapted from [MCKUSICK1996]. ........ 144 

Figure 5.8. FreeBSD disk I/O processing................................................................ 147 

Figure 5.9. Queuing at different layers in the network stack. ................................. 154 

Figure 5.10. FreeBSD network stack processing. ..................................................... 156 

Figure 5.11. Effects of preemption interval length when preemption intervals 
start at the beginning of foreground requests........................................ 157 

Figure 6.1. Experimental setup................................................................................ 160 

Figure 6.2. Overview of the expected performance behavior for an idletime 
scheduler. .............................................................................................. 163 

Figure 6.3. Baseline disk read performance without idletime presence under 
a random-access workload.................................................................... 166 

Figure 6.4. Measured random-access disk throughput (top row) and latency 
(bottom row). ........................................................................................ 168 

Figure 6.5. Baseline disk read performance without idletime presence under 
a sequential-access workload................................................................ 170 

Figure 6.6. Measured sequential-access disk throughput (top row) and 
latency (bottom row)............................................................................. 171 

Figure 6.7. Baseline UDP performance of a network interface without 
idletime presence. ................................................................................. 176 

Figure 6.8. Baseline TCP performance of a network interface without 
idletime presence. ................................................................................. 177 

Figure 6.9. Measured 1Gb/s Ethernet UDP/UDP throughput (top row) and 
latency (bottom row)............................................................................. 179 



 
xiii

Figure 6.10. Measured 1Gb/s Ethernet UDP/TCP throughput (top row) and 
latency (bottom row)............................................................................. 182 

Figure 6.11. Measured 1Gb/s Ethernet TCP/UDP throughput (top row) and 
latency (bottom row)............................................................................. 184 

Figure 6.12. Measured 1Gb/s Ethernet TCP/TCP throughput (top row) and 
latency (bottom row)............................................................................. 186 

Figure 6.13. Measured 100Mb/s Ethernet TCP/UDP throughput (top row) 
and latency (bottom row). ..................................................................... 190 

Figure 6.14. Measured 100Mb/s Ethernet TCP/TCP throughput (top row) 
and latency (bottom row). ..................................................................... 191 

Figure 6.15. Measured 100Mb/s Ethernet TCP/UDP throughput (top row) 
and latency (bottom row) with 10ms delay........................................... 193 

Figure 6.16. Measured 100Mb/s Ethernet TCP/TCP throughput (top row) 
and latency (bottom row) with 10ms delay........................................... 195 

Figure 7.1. Relative performance prediction error for the network case. ............... 204 

Figure 7.2. Relative performance prediction error for the disk case....................... 205 

Figure 7.3. Variant of the idletime scheduler chosen for implementation. ............. 216 

Figure 7.4. Idletime scheduler with relaxed transition into preemption 
intervals................................................................................................. 217 

Figure 7.5. Variant of the idletime scheduler chosen for implementation. ............. 219 



 
xiv

Abstract 

This dissertation presents idletime scheduling, an operating system scheduling 

mechanism for using idle resource capacity in the background without slowing down 

concurrent foreground use of the system. Executing less important tasks using 

background capacity increases system efficiency and user-perceived performance. 

Operating systems fail to support transparent background capacity use: most 

schedulers provide only fair sharing, which can reduce foreground performance by 

50% or more. 

The idletime scheduler limits the impact of background use on concurrent foreground 

processing. It partially relaxes the work conservation principle during short 

“preemption intervals.” It provides a generic mechanism that can accommodate 

resources with performance characteristics that vary by orders of magnitude. The 

preemption interval length controls the behavior of the mechanism: short intervals 

aggressively utilize idle capacity; long intervals reduce the impact on foreground 

performance.  

Experiments with an implementation for idletime network scheduling in FreeBSD 

maintain over 90% of foreground TCP throughput, while allowing concurrent, high-

rate UDP background flows to consume up to 80% link capacity. A disk scheduler 

implementation maintains 80% of foreground read performance, while enabling 

concurrent background accesses to reach up to 70% throughput. A quantitative 



 
xv

analysis of idletime scheduling predicts the measured performances with an error 

below 15%. In both cases, as well as other experiments, the idletime scheduler 

effectively limits the impact of background use on foreground performance. 



 
1

1. Introduction 

Many computer systems are mostly idle. One study reports an average of 50-70% of 

the total memory of a cluster of machines to be available [ACHARYA1999], with 15-30 

minutes between usage peaks. It concludes, “dips in memory availability (…) are 

likely to lead to a perception of memory being short.” Other studies focus on CPU 

utilization [MUTKA1987][MUTKA1991][WYCKOFF1998] and report that approximately 

70% of the monitored machines in a network were idle.  

In the future, idle capacities are likely to keep increasing. Figure 1.1 illustrates the 

exponential increase in hardware miniaturization for both chip densities (left graph) 

and storage densities (right graph) over the last decades. It is likely that this trend will 

continue for at least the near future. In addition, advances in wearable and ubiquitous 

computing increase the number of computers per person, from one (your desktop) to 

many: desktop, laptop, PDA, mobile phone, etc. Finally, humans are the bottleneck for 

many user-interactive workloads. The resource requirements of such workloads are 

1K4K

40048080
8086

80286i386
i486 Pentium

Pentium II
Pentium III

Pentium 4
Itanium

4G

128M

103

100

1010

Transistors
Per Die

109 Memory

108

107

Microprocessor

106

105

104

102

101

1970 1980 1990 2000 2010

16K

512M1G2G

16M
64M

1M256K
64K

0.001

0.01

0.1

1

10

100

1987 1991 1995 1999 2003 2007

Longitudinal Tape

Helical Scan Tape

Optical Disk

Magnetic
 Disk

1000

4M

256M

Areal Density (Gb/in2)

 

Figure 1.1. Miniaturization of microprocessors (left, source: Intel) and storage systems (right, source: 
StorageTek) 



 
2

not likely to increase at the same rates as the underlying hardware. The combination of 

all these trends will lead to vast quantities of underutilized resources. 

This research focuses on the means to utilize such idle capacity for productive 

background work, without delaying or otherwise interfering with regular foreground 

processing. For any given workload, a single resource – the bottleneck – limits 

performance [AMDAHL1967]. Even when the bottleneck is fully loaded, other 

resources remain partially idle. For example, a system with a fully loaded disk drive 

may still have significant idle CPU or network capacity. Using this idle capacity 

productively, without delaying processing at the bottleneck, can improve system 

efficiency and user-perceived performance. 

The key contribution of this work is a general, resource-independent mechanism for 

background use of idle capacity that minimizes performance impact on foreground 

use. It establishes background usage as a separate, isolated, low-priority service class, 

and allows background use of transient idle capacities with less impact on foreground 

performance. Based on traditional priority queuing, it selectively relaxes the work 

conservation property for background processing. Unlike many other approaches that 

require system-wide modifications to support different service levels, the proposed 

idletime scheduler can establish idletime service as a localized modification to 

selected schedulers. 



 
3

Idle resource capacity is therefore an opportunity “to get something for nothing” when 

utilized for background work. One example is system maintenance tasks such as virus 

checking or file system optimization. They should execute regularly and can delay 

user processing due to heavy use of resource capacity. However, it typically matters 

little exactly when or at which speed such tasks execute. Scheduling them with 

capacity that is not otherwise in use can eliminate delays for user processing and 

improve the user-perceived system performance. 

Another group of services that will benefit from idletime service is caches and 

prefetching systems, e.g., prefetching of likely future FTP or web requests 

[TOUCH1993][TOUCH1994][PADMANABHAN1996]. Conventional prefetchers must 

explicitly limit their speculative transmissions, to avoid excessive interference with 

regular network traffic. Idletime use of the network enables aggressive prefetching 

with minimal, limited interference with regular network traffic. Similarly, idle-

capacity use of storage resources (such as memory or disk space) allows the prefetch 

cache to grow without affecting foreground storage use. 

1.1 Key Issues 

Ideally, the presence of idletime “background” use in the system should be completely 

transparent to regular “foreground” processing, in terms of both performance and side 

effects. For example, the execution time of a given foreground process should be the 

same with or without concurrent idletime use of some resources. Idletime processing 



 
4

should fill the “gaps” in resource utilization, without delaying regular use. In such a 

system, resources could be busy with either foreground or background work at all 

times, improving overall efficiency. 

Furthermore, the side effects of idletime execution must also remain hidden from 

regular use. For example, when a file system holds idletime data, side effects include 

the visibility of idletime files to regular processes, and many other pieces of 

information, such as the count of free disk blocks, or the position of the disk head. To 

prevent idletime use from interfering with regular processing, the mechanism must 

carefully hide all such side effects. 

In reality, complete isolation of foreground processing from the presence of idletime 

use is extremely difficult. Interference can occur in terms of both performance and 

visibility of side effects. Most resources cannot switch between two jobs 

instantaneously, and switching from idletime use to a new regular foreground job will 

cause delays. Systems can only avoid these context-switch costs if they enforce 

reservations by pushing the context switch itself into idle capacity. Resource 

reservations require extensive application modifications and – when based on worst-

case scenarios – can lead to low resource utilization. They may thus fail to support 

common workloads in a general-purpose system. 

Because of the preemption cost associated with stopping the idletime work and 

starting foreground processing, idletime scheduling can delay regular foreground 



 
5

processing. Minimizing preemption costs is a key objective for effective idletime 

scheduling. Overall system efficiency improves only when the gain through idletime 

use is greater than its associated preemption costs. Even in such cases, preemption 

costs can still be unacceptable due to user policy. For example, idletime use during a 

bursty, interactive user task may delay each burst because of the required idletime 

preemptions. Depending on the user’s application, these delays – although small – 

may be unacceptable.  

1.2 Related Approaches 

The idea of using idle resource capacity is not new (see Section 8.2). Several systems 

strive to use idle capacity as part of their regular execution, or use it speculatively in 

the hopes of reducing future processing times. Process migration systems (e.g., 

Condor [LIZTKOW1988]) and data migration systems (e.g., SETI@home 

[KORPELA2001], Folding@home and Genome@home [LARSON2002]) attempt to push 

local computation to idle processors over a network. Other systems exploit idle remote 

memory as secondary storage [MINNICH1989][NARTEN1992]. Several prefetching and 

caching systems use idle resource capacity for transfer and storage 

[AKYÜREK1995][TOUCH1998]. 

Most existing systems that try to exploit idle capacity do not establish background 

processing as a separate, lower-priority service class. Instead, they often treat idleness 

as a system-wide condition and use ad hoc schemes to detect it (e.g., CPU utilization 



 
6

threshold, no user logged in, screen-saver active). During perceived idle periods, they 

simply add background tasks to the system’s workload under the regular execution 

priority.  

For a limited class of applications and workloads, such as the previously mentioned 

“@home” projects, this coarse approach works surprisingly well. However, it is not a 

general-purpose mechanism suitable for arbitrary usage scenarios. The approach fails 

to take advantage of idle capacities that exist even during busy periods and can 

severely affect foreground performance. Finally, many of these approaches, such as 

process and data migration systems, focus only on a single resource (usually the CPU), 

and are ineffective at utilizing idle capacities elsewhere in the system. 

The proposed scheduler minimizes delays for regular processing in the presence of 

idletime use. It is a general, resource-independent mechanism with strict prioritization 

between regular and idletime use, which can utilize short, transient idle times for 

background work, even when the bottleneck resource is fully loaded. 

The proposed idletime mechanism relaxes the work conservation property for idletime 

jobs. Work conservation requires that a resource must not remain idle while jobs are 

waiting for service. The idletime scheduler introduces a time delay, called the 

preemption interval, before switching from regular to idletime processing. When 

additional foreground jobs appear at the resource during the preemption interval, they 

immediately receive service. In the absence of a preemption interval (i.e., with simple 



 
7

priority queues), the higher-priority job would have to wait until the ongoing idletime 

work finished or was preempted (for resources that support preemption). In either 

case, delays caused by idletime processing would reduce regular foreground 

performance. Idletime scheduling amortizes these delays over a burst of regular 

processing requests, and consequently increases foreground performance compared to 

a simple priority queue. 

The length of the preemption interval controls the impact idletime use has on regular 

processing. With a short preemption interval, the scheduler is more aggressive in 

utilizing idle capacity for background use, but permits a higher impact on regular 

processing. With a longer preemption interval, the impact is lower, but idletime 

performance also decreases, because a longer preemption interval shortens the usable 

fraction of an idle period. Changing the length of the preemption interval allows 

tuning of the mechanism according to user policy and current workload, within limits. 

Another feature of the proposed scheduler is that it only requires modifications to key 

resources, instead of widespread system changes. Conventional priority schemes 

require modifications to all resource schedulers in a processing hierarchy to support 

arbitrary workloads. When some schedulers remain unmodified, one of them could 

control overall system behavior under specific workloads, and effectively disable 

prioritization. The preemption interval of the proposed scheduler introduces controlled 

delays for the lower-priority idletime service class. This delay causes the formation of 



 
8

idletime queues that absorb the scheduling (mis-) decisions of non-idletime schedulers 

earlier in the processing hierarchy. 

1.3 Outline 

Chapter 2 will give a detailed overview of the proposed idletime scheduler, and 

evaluate how it improves existing services and applications, along with enabling new 

ones. Examples include improving prefetching, precomputation and caching, 

transparent replication of data, and improving scheduling of maintenance tasks, such 

as cron. Chapter 2 will also discuss challenges in providing idletime service with 

conventional quality-of-service approaches, and identifies the key issues a successful 

solution must address, such as minimizing foreground delays due to preemption of 

idletime work. 

Chapter 3 discusses preliminary work in application- and kernel-level mechanisms to 

establish idletime scheduling of network transmissions. It first evaluates several 

application-level mechanisms [EGGERT1999] to enable idletime network service for 

the Apache web server [APACHE1995]. The second part of Chapter 3 presents a 

preliminary kernel-level mechanism for idletime network scheduling, and evaluates its 

effectiveness experimentally [EGGERT2001A][EGGERT2001B]. Both application- and 

kernel-level schedulers are effective in establishing different levels of service for 

network transmissions. However, they fail to completely shield foreground 

transmissions from the presence of background traffic, and are unable to utilize 



 
9

significant available network capacity for background use. Furthermore, they only 

support network scheduling, and do not provide a generic mechanism for arbitrary 

resources. 

Chapter 4 discusses the theoretical principles for idletime scheduling with preemption 

intervals in detail. It presents a formal model for resource processing, defines its key 

operations and axioms, and then describes the proposed scheduler in terms of the 

model. A quantitative analysis of the model results in a simple mathematical model 

that can predict the global behavior of the new scheduler for specific resources and 

workloads.  

Chapter 5 analyzes several variants of the idletime scheduler that conform to the 

properties defined in Chapter 4, and identifies one variant for implementation. It 

discusses the prototype implementation of idletime scheduling for the disk and 

network subsystems of the FreeBSD operating system, and discusses the prototype’s 

features and limitations. 

Chapter 6 discusses experiments that evaluate the performance of the prototype for 

different network and disk workloads. Chapter 6 discusses and analyses the results of 

the experimental evaluation, and compares the measured behavior to the predictions 

based on the processing model of Chapter 4. One principle result is that the simple 

quantitative model in Chapter 4 can predict the measured performances of the 

prototype implementation to within 5-15% (borderline cases up to 20%).  



 
10

Chapter 7 identifies the strengths and weaknesses of the current mechanism and 

prototype implementation and suggests areas for future improvements and research. 

Examples include increasing idletime performance by permitting a fixed foreground 

overhead, and automatically adapting the length of preemption intervals based on the 

observed scheduler behavior for the current workload. 

Chapter 8 covers related work, such as realtime systems, idletime execution, and other 

speculative techniques. Finally, Chapter 9 summarizes and concludes this work. 



 
11

2. Overview 

This chapter introduces the concept of using available resource capacity in the 

background, without interfering with regular foreground processing. It starts with a 

short overview of resource processing that defines terminology used throughout this 

document. Later sections motivate the idea of idletime use by observing that idle 

resource capacity has been plentiful, and likely to increase in the future. However, 

several properties of existing systems make idletime use impractical. Key challenges 

lie in system architecture, scheduler properties, absence of preemptive resource use, 

effects on system caches, and interference through processing side effects. Chapter 4 

will then introduce a new mechanism for idletime scheduling in current systems that 

addresses these issues. 

A typical computer system contains multiple resources, normally at least a CPU and 

some main memory. Usually, a system also has some persistent storage devices (e.g., 

disks), communication devices (e.g., network interfaces, modem), and user I/O 

devices (e.g., keyboard, display, audio). 

The resource use of processes can be modeled as an event stream, where processes 

generate resource requests to acquire processing capacities (e.g., “read this disk block” 

for a disk, “send this packet” for the network, or “run me” for the CPU). Resources 

process these requests in some order, and may generate resource responses (e.g., “here 



 
12

is the block you wanted” for a disk read request). Note that some requests may result 

in an implicit response, such as a “run me” request for CPU capacity. 

One characteristic common to all resource types is capacity. Processing resource 

requests uses all or some of the available capacity of a resource. Capacity used to 

process one request is unavailable to another. If a request requires more capacity than 

the resource has available at a given time, the resource must delay the request until it 

has enough capacity available, or it may even reject the request altogether. 

One property that categorizes resources is how they allocate their capacity when 

serving requests: some resources are spatially shared, whereas other are temporally 

shared. 

Spatially shared resources 

Spatially shared devices divide their capacity into allocation units and 

can serve multiple resource requests concurrently. Processes must 

typically lease partial capacity before use. Leased capacity becomes 

available for reuse only after a process explicitly returns it. Storage 

capacity (e.g., disk space, memory swap space) is an example of a 

spatially shared resource.  



 
13

Temporally shared resources 

Temporally shared resources do not subdivide their capacity for 

concurrent use. Instead, a single process is leased the full resource 

capacity for a certain (usually fixed) period. The capacity lease is often 

implicit in submitting the request, and automatically terminates after 

the request finishes. I/O devices (e.g., network interfaces) and CPUs 

are examples of temporally shared resources.  

It is possible to model spatially shared resources as temporally shared by treating each 

allocation unit as a separate resource with an unlimited lease time. For example, 

instead of viewing disk storage capacity as a single spatially shared resource, from 

another perspective each disk block is a separate temporally shared resource with an 

infinite lease time. Accordingly, a scheduler for a spatially shared resource could be an 

extension of one for a temporally shared resource bundle. 

Systems may contain multiple, similar resources. For example, on a system with 

multiple channel-bonded network interfaces, a request can use any available interface. 

Such a device bundle gains some characteristics of a spatially shared resource, because 

its components can serve multiple requests simultaneously. Another example is a 

multiprocessor, where the individual CPUs execute in parallel. 

Some physical devices combine aspects of temporally and spatially shared resources. 

One example is a disk drive. Its storage capacity is spatially shared (different disk 



 
14

blocks allocated to different processes), whereas its I/O bandwidth is temporally 

shared: a drive typically serves only a single I/O request at a time. Because these two 

capacities are separate, complete support for idletime use must consider both aspects. 

However, idletime support that is limited to one kind of capacity can still be useful. 

For example, idletime use of disk I/O bandwidth without idletime storage capacity can 

be useful if a fraction of storage capacity is reserved for idletime use. 

User I/O devices (e.g., keyboard, audio) are a special subcategory of temporally 

shared devices, for which idletime use may not be appropriate. Users explicitly control 

these devices, and the operating system should treat them as fully utilized and not 

override the user’s scheduling decisions. However, user I/O devices may share an I/O 

channel (e.g., USB) with other devices. Idletime use of the shared channel capacity is 

possible if mechanisms treat user I/O requests as foreground use, to prevent delays. 

Another special class of resources supports virtualization. Such resources employ 

various techniques to present a simplified and improved virtual resource to their users. 

One example is virtual memory, which presents each process with an isolated address 

space (simplification) that is often larger than the underlying physical memory 

(improvement) by paging seldom-used parts of address spaces to secondary storage. 

Another example is RAID disk arrays [PATTERSON1988] and striped network 

interfaces [TRAW1995]. By transparently bundling the capacity of several physical 

resources, they increase performance and fault tolerance. 



 
15

2.1 Motivation 

The key idea behind idletime scheduling is to utilize otherwise unused resource 

capacity productively. Ideally, the presence of idletime processing in the system would 

be completely undetectable to foreground tasks. Neither performance nor observable 

side effects of execution would differ, whether idletime tasks were present in the 

system or not. 

Many system resources often have idle capacities. For any given batch workload, a 

single resource can become the fully utilized system bottleneck that limits 

performance at any given time [AMDAHL1967]. This means that even during its most 

busy periods, the other resources of a system have idle capacity. For example, consider 

the necessary operations to serve a web request. First, the system bottleneck is usually 

the network interface, receiving the request, followed by the system bus when moving 

the request from the network interface to main memory. Then the CPU and system bus 

limit performance when parsing the request. At some point, the disk and system bus 

become the bottleneck when retrieving the response data, followed again by the CPU 

and system bus while encoding the response. Finally, the system bus and network 

interface limit performance when copying the response to the network card and 

sending the response. The system appears fully loaded, because at each time during 

the processing of the web request, a bottleneck resource exists that limits performance. 

However, idle capacities still exist, for example, CPU and network interface could be 

idle during the disk access. 



 
16

Even more idle capacities exist on systems with bursty workloads. Such workloads 

consist of short bursts of activity followed by periods of inactivity. During periods of 

inactivity, the system is often completely idle. One example of such bursty workloads 

is interactive applications on user desktops, such as word processing. As an 

illustration, the world’s fastest typists reach sustained speeds of approximately 150 

words/minute and 12.5 characters/second. Current CPUs reaching speeds of 3 GHz 

and higher can execute up to a mean of 240 million instructions between two 

keystrokes. The potential for idletime use is large. 

Several studies have tried to better quantify the amount of idle resource capacity. 

Some report approximately 70% of monitored workstations in a networked 

environment had completely idle CPUs, which are temporally shared resources 

[MUTKA1987][MUTKA1991][WYCKOFF1998]. Others focused on quantifying the 

available amount of spatially shared capacity, and report 50-70% unused memory in a 

cluster of machines [ACHARYA1999]. Idle capacities may be even more plentiful than 

these studies suggest, due to the use of coarse metrics to determine idle times (e.g., 

“no user logged on,” “screen saver active,” or “CPU load minimal.”) Short, transient 

idle times may therefore remain undetected due to quantization effects. Furthermore, 

none of these studies monitored multiple, different resources. 

Idletime scheduling proposes to utilize these idle capacities for productive work. The 

primary characteristic of a successful idletime mechanism is its impact on regular 

foreground processing. Clearly, an idletime scheme that significantly delays regular 



 
17

processing is not useful. Users will disable idletime processing if the decrease in 

system responsiveness for their foreground tasks becomes unacceptable. A second 

characteristic is the amount of background processing an idletime mechanism can 

schedule during a given foreground workload – more is better. 

Both these metrics are subjective. The design of the idletime mechanism presented in 

this work assumed that limiting the impact on foreground performance was the critical 

characteristic, whereas the performance of scheduled idletime work was secondary. 

This conservative policy can support a wide variety of workloads, especially cases 

where idletime usage is speculative and predictions about its usefulness are difficult. 

Idletime schemes for different requirements may require a different approach and are 

outside the scope of this work. 

Idletime use delays foreground processing whenever a resource must preempt ongoing 

idletime work to schedule an arriving foreground job – or worse, when a resource does 

not support preemption, and the idletime work must run to completion before the 

higher-priority foreground job can receive service. Preemption cost is the most 

important factor contributing to foreground delay. 

In a realistic scenario, the preemption operation incurs some overhead, which is the 

key delay for foreground processing. Section 2.3 discusses preemption cost and other 

challenges for idletime use. The next section investigates the kinds of performance 

improvements that idletime use of temporally and spatially shared resources offers. 



 
18

The final section of this chapter presents the key idea behind the idletime scheduler, 

which is the main contribution of this work. 

2.2 Applications and Benefits 

A wide variety of systems will benefit from the availability of idletime service. This 

section discusses four example areas in idletime use is beneficial: prefetching and 

caching, disk and network mechanisms, and application-layer uses. 

2.2.1 Prefetching and Caching 

For spatially shared storage resources, caches are the main idletime application. A 

system’s storage facilities form a hierarchy according to their access delays, as shown 

in Figure 2.1. Capacity at higher (faster) levels is typically costly and smaller, whereas 

capacity at lower (slower) levels is large and less expensive. Caching data from lower 

levels of the hierarchy at higher levels improves performance by reducing access 

delays. Swapping is the inverse of caching. It pushes data from higher levels into 

CPU
Registers

Cache Memory

Main Memory

Solid State Disk

Magnetic Disk

Magnetic Tape

Shelved Magnetic Disk

Optical Disk Jukebox

Shelved Optical Disk

B
an

dw
id

th
 &

 C
os

tCapacity

Secondary
Storage

Tertiary
Storage Off-line Storage

Near-line Storage

 

Figure 2.1. Storage hierarchy. 



 
19

lower ones, to simulate larger virtual capacity at the higher level. 

Caches use storage capacity speculatively by replicating data in faster storage to speed 

up potential future accesses. A cache hit occurs when required data is present in the 

cache, and results in a performance increase due to reduced access time for a data 

item. The hit rate of a cache expresses its effectiveness. Higher hit rates speed up the 

system by reducing access costs. Increasing the hit rate is a key technique to speeding 

up overall system processing. 

Two separate properties control the hit rate of a cache: the cache size and the cache 

contents. Obviously, a larger cache will hold more data items, and increases the 

likelihood of a cache hit. Likewise, optimizing cache content by caching frequently 

accessed data items will also increase the hit rate. One method of increasing the 

quality of cache content is by prefetching data items that will likely be accessed in the 

future. Using idle capacities to support caching can improve system performance. 

Maximizing cache size and aggressively prefetching quality data items maximizes hit 

rates. However, overly large caches can in fact cause a performance decrease by 

reducing the availability of fast storage capacity for application use. Ideally, a cache 

should always use any idle capacity available at each level in the storage hierarchy, 

and grow or shrink in size according to application use. Using idle storage capacity for 

caching achieves this goal and maximizes hit rates without limiting the availability of 

fast storage for application use.  



 
20

Prefetching – to increase the quality of cache contents – also benefits from the 

availability of idletime use of temporally shared I/O capacity. Without a low-priority, 

background transfer service, caches must carefully limit their prefetching in order to 

avoid slowing down concurrent foreground transmission. Issuing prefetch operations 

in idle I/O capacity enables aggressive prefetching without delaying concurrent 

foreground use, and thus allows a cache to maximize its content quality, increasing hit 

rates. 

Prefetching and caching are important techniques to speed up execution. The goal is to 

interleave I/O activity with computation and to prefetch data prior to use, hiding I/O 

latency. Several proposals focus on prefetching, using different compile-time, run-time 

and speculative techniques. The remainder of this section will discuss how the 

availability of idletime service improves existing caching and prefetching systems. 

One disk prefetching mechanism uses idle CPU cycles while a process blocks for I/O 

completion. It speculatively continues execution of a shadow copy of the same process 

that generates prefetching hints to speed up future I/O [CHANG1999]. The shadow 

copy executes in a sandbox environment that prevents side effects to become visible to 

the original process. The authors claim 30-70% reductions in execution times for 

various benchmarks. This prefetching system already supports partial idletime use by 

generating disk prefetches with idle CPU cycles. However, the actual disk operations 

are not issued in the background. They can thus interfere with concurrent foreground 

use.  



 
21

Another cache system for out-of-core computations (where large datasets must reside 

on secondary storage) uses compiler techniques to insert prefetch instructions 

automatically into the application code [MOWRY1996]. Experiments show that the 

technique is successful in hiding between 50-98% of the I/O latency, speeding up 

execution by a factor of 2-3. Similar techniques are also effective for memory cache 

prefetches [OZAWA1995][MOWRY1998]. 

Finally, a third mechanism allows applications to disclose future disk accesses to the 

operating system explicitly by passing hints [PATTERSON1995]. The authors report a 

performance increase of up to 42% for some applications. 

All three approaches strive to identify idle resource times to schedule their prefetches. 

The first system does so automatically by running the hint generator when the process 

is blocked. However, due to the absence of prioritized resource access, the hint 

generator – and the prefetches it generates – can still interfere with regular CPU and 

disk use by other processes. 

The last two systems are even more limited, because they rely on application-level 

strategies to identify idle times. The mechanisms presented in this proposal could 

improve and simplify all these systems by shielding regular resource use from the 

presence of the prefetches, as well as caching speculative data in idle storage capacity. 



 
22

Successful caching depends on structured information to allow prediction of future 

usage. Such internal structure may not be readily available, limiting prefetching 

opportunities. Cross-domain prediction [HUGHES2001][HUGHES2002] utilizes 

structure in one cache to generate prefetch predictions for others. This increases the 

usefulness of caches, and can improve performance. One example is speculative 

execution and caching of likely future DNS queries, based on the contents of a web 

browser cache. In this example, simulations show a miss rate reduction of 15% with a 

threefold increase in DNS cache size. 

Most operating systems contain caches at many levels in the processing hierarchy 

(memory cache, disk buffer, ARP, HTTP, etc). Idletime operations can modify cache 

contents, affecting regular performance. Hint generation for disk block prefetching 

[CHANG1999], as previously discussed, explicitly tries to pre-load the disk cache with 

useful data to increase performance. 

However, performance decreases due to idletime use can also occur. One study reports 

a decrease in regular performance when speculatively clearing memory pages. Most 

operating systems clear memory pages before they allocate them to processes, to 

prevent exposure of sensitive data, such as passwords. However, page clearing at 

allocation time severely affects performance. Clearing pages in the kernel’s idle loop, 

such that pre-cleared pages are frequently available at allocation time [DOUGAN1999], 

may alleviate this problem. However, the authors report that memory cache pollution 

due to page-clearing limited the overall performance gain. Application-created cache 



 
23

entries were flushed to store page-clearing data, and application performance therefore 

decreased, even though page allocations were faster. The obvious fix is to disable 

cache replacement during idletime processing. Although this decreases the 

performance of the page-clearer, it retains application state in the cache, and thus 

improves performance. 

Studies investigating other examples of idletime processing, however, find that leaving 

caches enabled during idletime execution can have a beneficial effect on overall 

performance, due to a pre-load effect. One such example is the prefetchers discussed 

previously, which pre-load the disk cache with useful information. Another study 

investigates the memory cache behavior of a processor with support for multithreading 

[KWAK1999], and finds that hit rates increase for related threads that exhibit locality-

of-reference, whereas they decrease for unrelated threads. A third study monitors the 

execution behavior of speculatively executing processes [PIERCE1994]. The authors 

report that although data references increase with speculative execution, data misses 

increase only moderately; and the prefetch effect more than offsets the performance 

impact, resulting in improved performance overall. 

With extensive idletime use of resources, as proposed in this paper, cache pollution 

can become an issue. To guarantee isolation, extensions to suspend cache 

replacements may be required for many of the system caches. 



 
24

2.2.2 Network Service 

One important group of applications focuses on improving user-perceived network 

service. Idletime use can reduce both connection-open latencies and transmission 

times. The key idea here is to trade current idle bandwidth for a possible future latency 

reduction [TOUCH1992]. Ideally, in a network with support for idletime use, lower-

priority packet processing will only occur when resources would have been idle in the 

absence of such traffic. 

One well-known application of this idea is web prefetching 

[TOUCH1993][TOUCH1994][PADMANABHAN1996]. It would greatly benefit from the 

availability of idle resources use. First, transmitting prefetched data using idle network 

resources completely shields regular network users from its presence. Consequently, 

the prefetcher no longer needs to limit its aggressiveness to prevent monopolizing the 

network bandwidth and potentially delaying concurrent transmissions. Second, larger 

caches become possible by using idle storage space for the prefetched data. 

Even without using idle storage space for caching prefetched information, current idle 

bandwidth can reduce future network latency by “prefetching the means” 

[COHEN2000]. This scheme does not prefetch any data, but instead negotiates the 

means to transfer future data, such as opening TCP connections or resolving DNS 

names. Idletime execution of these operations creates very little state compared to 

caching the data, so idletime access to storage capacity may not be necessary. 



 
25

Another technique described in [COHEN2000] is warming a TCP connection by 

sending a small amount of throwaway data over a pre-opened connection. This may 

establish additional state in the end system and router caches, and consequently further 

improve performance when routers support idletime use and prevent cache trashing 

due to extensive pre-warming. Using idle network capacity for this purpose improves 

on the original proposal by permitting a host to pre-send probe packets without 

interfering with regular traffic. This permits presending of larger amounts of data, 

allowing TCP to estimate the round-trip time (RTT) and congestion window for the 

connection better. This may result in better network throughput for later transmissions 

over the warmed connection, assuming that idletime probes can establish a lower 

bound for regular network service. 

One drawback of existing schemes to warm caches, such as [COHEN2000], is that they 

suffer from the “tragedy of the commons” effect [HARDIN1968]. The benefit of 

warming a cache will disappear once the mechanism becomes widely used. Even 

worse, performance may decrease with aggressive warming due to cache trashing. 

Idletime execution of speculative operations to warm caches, combined with an 

idletime-aware cache, may help address this issue. 

Execution of two additional network operations during idle time (to “prefetch the 

means”) could be effective. One is speculatively initiated path MTU discoveries 

[MOGUL1990] to likely future hosts. A PMTU discovery can add one or more round-

trip-times to the connection-establishment delay. Hosts supporting PMTU discovery 



 
26

implicitly perform it whenever they open a TCP connection, and scheduling the 

discovery during idletime can reduce connection-open delays. 

Another similar idea is idletime initiation of IPsec key negotiations using the Internet 

Key Exchange (IKE) [HARKINS1998] with likely future peers. It also has the potential 

to save several round-trip times. With current proposals for opportunistic encryption 

[RICHARDSON2003], IKE negotiations may become much more frequent. Idletime 

execution of IKE exchanges can reduce user-perceived connection-open delays for 

successful predictions. 

TCP Fast Start speeds up the slow-start period of the TCP protocol 

[PADMANABHAN1998] by sending more packets than allowed during each congestion 

window. The authors argue that marking these extra packets with a drop-preference 

priority eliminates congestion problems. Rate-Based Pacing [VISWESWARAIAH1997] is 

an earlier approach to the related problem of restarting TCP connections after idle 

periods. Instead of performing a slow-start cycle, Rate-Based Pacing resumes 

transmission at the send rate used prior to the idle period. This may also cause 

transmission of more packets than allowed by TCP’s windowing algorithm. As for 

TCP Fast Start, sending these extra packets in the background can eliminate 

congestion events. 

All previous applications required idle bandwidth to operate. However, even without 

idle bandwidth, a server system can use idle local resources to increase its network 



 
27

performance. Most servers (e.g., NFS, FTP, and web) incur packetization cost for each 

requested object by reading it from the disk (or disk buffer) and splitting it up into a 

packet chain before transmission. For static objects, caching the packets in idle storage 

[POSTEL1998] can reduce this cost for repeated accesses [LEVER2000]. As 

packetization cost increases, e.g., with IPsec authentication, the potential for 

improvement becomes even greater. 

Note that idletime use of the network requires router support. However, the new 

service model is a simple extension of the current Internet service model, where 

routers (and hosts) treat packets equally according to a best-effort discipline 

[CLARK1988]. Idletime use does not change this fundamental model: the network may 

still reorder, drop, or duplicate packets. Idletime networking is strictly a per-hop 

function of giving higher processing preference to regular, foreground packets. Section 

5.4 discusses idletime networking in more detail. 

2.2.3 Disk Service 

All the applications for idletime use of available resource capacity described in the 

previous sections mainly use idle network bandwidth, and to a lesser degree memory 

and CPU. Idletime use of disk capacity (both I/O bandwidth and disk space) has also 

the potential to improve system performance. 

Most file systems already use read-ahead techniques to improve input performance 

[PATTERSON1995]. A straightforward improvement would be to execute read-ahead 



 
28

prefetches (which are speculative by nature) with idle disk resources, and move the 

disk buffer that caches them into idle physical memory. Prefetches would then no 

longer interfere with regular read operations, and large idle-memory disk buffer sizes 

would not limit memory availability for regular uses. 

Another technique that would benefit from the availability of idletime disk service is 

disk block replication [AKYÜREK1995]. This approach spreads replicas of frequently 

used disk blocks out over the entire disk. In effect, it moves the data closer to the disk 

arm, reducing arm movement and therefore access times. One drawback of this 

scheme is that replicas decrease available disk space, and replica management uses 

disk bandwidth. Using idle disk space and bandwidth would mitigate these 

shortcomings. 

The inverse of the previous scheme is to move the disk arm near spots of likely future 

accesses during idle time [KING1990][MUMOLO1999]. Unlike the disk block 

replicators, this approach does not transfer or cache any data, so the memory and disk 

subsystems need not support idletime use. The drawback is that replication can have 

better prediction rates than head relocation, because the likelihood of the arm being 

near the data increases with the replication factor. 

Prefetching and caching file system meta-data is another technique to increase file 

system performance [MOLANO1998]. As with many caches, choosing the correct size 

is critical for system performance. Using idle memory for the cache solves this 



 
29

problem, as the cache will automatically shrink as memory use by regular processes 

increases. 

Many file systems must be periodically checked for inconsistencies due to loss of 

power, etc. One improvement to the Berkeley Fast File System [MCKUSICK1984] is a 

background daemon that continually monitors and fixes file systems for 

inconsistencies [MCKUSICK2002]. Such a process would be a prime candidate for 

execution with idle CPU and disk resources. Similarly, adaptive techniques to 

optimize performance of log-structured file systems require periodic reorganization of 

disk contents [MATTHEWS1997]. Executing these tasks with idle resources could 

improve overall system performance by minimizing interference with regular use. 

2.2.4 Application-Layer Uses 

Application-layer uses for idle resources also exist. One such application is an 

improved nice utility to schedule periodic optional maintenance tasks in a system. 

Examples of such tasks are checking for viruses, defragmenting the file system, and 

auditing system security.  

Non-optional system management tasks, typically run from calendar-based schedulers 

such as cron [REZNICK1993], also benefit from using idletime resources. Cron runs 

specified tasks at certain times. Simply running cron using idle resources is not 

sufficient, because regular resource use could then prevent scheduled cron tasks to 

miss deadlines.  



 
30

However, many tasks scheduled via cron do not have absolute deadlines. Guaranteeing 

that such tasks execute within a certain time interval – as opposed to at a specific point 

in time – extends the cron scheduling model to support use of idle capacity. For 

example, instead of scheduling a regular disk cleanup explicitly at 2am (because 

resources tend to be idle at that time of the day), the system would schedule an 

idletime disk cleanup anytime between 1-2am. If the task did not run by 2am due to 

unavailable idle resources, it would then execute using regular resource capacity. 

Under this model, foreground processing can be isolated from the presence of periodic 

background tasks by pushing those into idle periods before a deadline. If insufficient 

idle capacity is available before the deadline, the system switches a cron task over to 

foreground execution. In consequence, operation in the fallback case is similar to 

regular cron, while still isolating regular use when sufficient idle capacities are 

available.  

2.3 Challenges 

The previous section gave an overview of the kinds of current services and 

applications that would benefit from idletime use. However, many existing systems 

cannot support such idletime use without delaying regular foreground processing. This 

section will discuss the key challenges for idletime use. Chapter 4 then introduces an 

idletime scheduling mechanism that addresses these challenges. 



 
31

Several issues affect the feasibility and effectiveness of a mechanism to use idle 

resource capacity. The most obvious is the distribution of idle times for a system’s 

resources for a given workload. When idle capacities are rare or very short – i.e., with 

mostly utilized resources – the chance for performance improvement is low. As 

previously mentioned, however, ample idle capacity is often available.  

Because idletime scheduling introduces a new lower-priority service class, request 

prioritization is clearly a required property of any idletime scheduler. Resources must 

give preferential treatment to queued foreground requests and serve them before any 

waiting idletime requests. Otherwise, foreground performance will decrease. For 

example, if a network interface starts sending an idletime packet even though a regular 

packet is also enqueued, it reduces foreground performance. Section 2.3.1 will discuss 

this issue in detail. 

In addition to simple queue schedulers, many systems contain implicit scheduling 

decisions that can interfere with idletime use. One example is the implicit 

prioritization between low-level device interrupt processing, higher kernel levels and 

user-space processing. Interrupt handling on behalf of idletime use can delay higher-

level foreground processing, even with priority queues. Section 2.3.2 looks at these 

cases. 

In addition to service prioritization, resources with support for idletime scheduling 

should also support request preemption. In the ideal case, a resource can immediately 



 
32

preempt ongoing idletime processing to free capacity for a newly arriving foreground 

request. For example, consider a 10GB disk device that contains 5GB foreground data 

and has allocated another 4GB for idletime processing. When more than 1GB of new 

foreground data needs to be stored, the disk needs to free enough idletime space 

transparently to accommodate the new foreground data. 

In a realistic scenario, these preemption operations incur an overhead, and are the key 

factor affecting delay for foreground processing. In the previous example, the 

foreground request requiring additional storage capacity must wait until the resource 

has reclaimed enough idletime space. If no idletime use were present in the system, 

this delay would not occur. Likewise, if the reclamation happened instantaneously, the 

foreground request would also not have to wait. 

Although some resources support request preemption, others do not. For example, on 

the PC architecture, resource I/O operations involving direct memory access (DMA) 

are not preemptable. When idle capacity on such resources is used for background 

work, the resource may have to delay newly arriving foreground requests until 

finished idletime requests free enough capacity to service them. Because service times 

are typically much longer than preemption times, idletime use of resources without 

preemption can severely affect foreground performance without additional 

mechanisms. Section 2.3.3 investigates preemption costs in detail. 



 
33

The key contribution of this research is a scheduling mechanism that can limit 

preemption costs in such cases. As discussed in detail in Chapter 4, it relaxes the work 

conservation property and introduces a preemption interval during which no idletime 

processing may begin, even if the resource has idle capacity. The length of a 

preemption interval can vary, and allows adaptation of the overhead of idletime use to 

a given delay policy. 

Finally, idletime use may not be appropriate in all scenarios. Although it has the 

potential to increase system performance, utilizing resources during otherwise idle 

periods increases the power consumption of the system, and causes additional wear-

and-tear for hardware components. The current idletime mechanism does not address 

such scenarios. Future idletime extensions may incorporate design ideas from power-

aware schedulers [PAPATHANASIOU2003][ZHENG2003] to enable idletime use in 

restricted environments. 

2.3.1 Scheduler Properties 

To differentiate between regular foreground and idletime background processing, the 

operating system needs to associate a flag with each resource request and its 

corresponding response to indicate service class. Schedulers must honor the priority 

flag and order their work queues accordingly. Furthermore, resources must implement 

a preemption mechanism for idletime use when possible, to minimize impact on 

foreground use. 



 
34

Many traditional operating systems do not support transparent background use of idle 

resources. Their resource schedulers usually seek to establish some degree of fairness 

between their different processes – or at least prevent starvation. This property 

effectively prevents idletime use, because background requests should not receive a 

fair share of resource capacity at the expense of foreground processing – they should 

not receive any share in that case. Background use of idle capacity on such resources 

can delay or even prevent regular foreground use, because they start background work 

while foreground work is waiting, or fail to preempt background work when 

foreground work arrives.  

One example of a problematic scheduler is the multilevel feedback queue that many 

UNIX systems use for CPU scheduling. This variant of a round robin scheduler favors 

bursty processes, which do not fully utilize their allocated CPU quantum, by raising 

their priority over time. Additionally, it punishes compute-bound processes by 

lowering their priorities. Most I/O-bound processes are bursty – they block during 

device operations – and consequently achieve high CPU priorities. Commonly, the 

CPU scheduler offers the user processes some degree of control over their priorities. 

Non-privileged processes may lower their priority from the default, whereas 

increasing the priority is restricted to privileged processes. However, monopolizing the 

CPU through this mechanism is impossible; it merely adjusts the share of processing 

time and does not establish total priority. 



 
35

Simple first-in-first-out (FIFO) schedulers control access to many other system 

resources. Although FIFOs by themselves do not assure fairness, they do so in 

combination with a fairness-enforcing CPU scheduler such as the one previously 

described, because a process cannot issue any resource requests without a CPU to run 

on.  

Neither FIFO nor round robin schedulers satisfy the prioritization principle; all 

requests receive equal service. Even a multilevel feedback queue only allows 

adjustment of shares, and does not allow starvation. To support non-interfering 

idletime use, resource schedulers must instead augment such scheduling disciplines 

with priority queues with two service classes for regular and idletime requests. 

The CPU scheduler on many POSIX-compliant systems [POSIX1993] already offers 

this capability. The POSIX CPU scheduler has three distinct priority classes (realtime, 

regular and idletime), each managed by its own multilevel-feedback queue, and 

supports preemption. Consequently, processes running under the POSIX idletime 

scheduling class will not receive any CPU time while processes in higher classes are 

runnable. Starvation of lower-class processes occurs when higher-class load increases 

to saturation. Experiments with the POSIX scheduler show that it can isolate regular 

use from idletime requests to within 1% of overall throughput. Some other 

experimental CPU schedulers also support an idletime processing class explicitly 

[FORD1996]. 



 
36

2.3.2 System Architecture 

Computer systems contain many queues with their associated schedulers. Some 

manage physical devices, such as CPUs, memory or network interfaces. Many others 

are internal to the operating system, and manage buffer pools, multiplexers and work 

queues. A third kind of scheduler is implicit in the distributed cooperation of different 

pieces of code that interact according to a certain protocol, such as giving processing 

priority to interrupt handling. 

Processing inside an operating system can be modeled as a directed graph, in which 

nodes correspond to resources and arcs denote producer/consumer relations. Processes 

are producer nodes that create resource requests and physical resources are consumer 

nodes that sink them. A request processed at a resource node may generate zero or 

more associated requests that in turn propagate to other resources for processing. To 

execute a specific processing step, a process will issue requests that flow as a request 

stream through a succession of queues managed by various schedulers before 

terminating at a physical resource. Loops are specifically allowed and are resolved by 

the processing rules. 

As an example of such a queue hierarchy, Figure 2.2 shows the queues involved in 

network communication using TCP. When sending TCP traffic (top queue chain in 

Figure 2.2), data flows from the send buffer of an application (on the left) into the 

socket send buffer in the kernel. TCP’s congestion control algorithm then places the 

corresponding IP packets into the device send queue, and the network driver (on the 



 
37

far right) finally transfers these packet to the network interface. TCP inbound 

processing (bottom chain in Figure 2.2) is similar. 

Some operating systems, such as Scout [MOSBERGER1996], strictly implement this 

path-based graph model. A central scheduler manages all paths in the queue hierarchy, 

and decides which path to service at any given time. Adding idletime support to such 

systems is straightforward through an extension of the central scheduler. However, the 

major drawback of Scout and similar systems is their vastly different API, which 

requires application modifications and thus severely limits the usefulness of such an 

extension. 

Idletime support for more conventional operating systems, such as UNIX-based ones, 

is much more complicated. They too consist of a large number of resources and 

schedulers that require modification, but additionally have implicit processing rules 

that interfere with idletime use. One example of such implicit prioritization is giving 

higher priority to internal kernel processing and preempting process execution for 

events such as interrupt handling. Even inside the kernel, lower-level events such as 

send buffer socket send buffer device send queue NIC TX queue

receive buffer socket receive buffer IP receive queue NIC RX queue

w
ire

process socket layer network layer hardware

CPU scheduler transport protocol device interrupt link access protocol

TC
P 

pr
oc

es
sin

g

 

Figure 2.2. Queues involved in network communication over TCP. 



 
38

hardware interrupts take priority over higher-level system call processing. 

Furthermore, kernel processing is often work conserving. The operating system will 

service all pending events before resuming execution of user processes. This can cause 

priority inversion, where a higher-priority request must wait for the completion of a 

lower-priority one [LAMPSON1980]. 

These processing properties interfere with idletime resource use. Giving higher 

preference to kernel processing can counteract prioritization, because the system may 

interrupt execution of a foreground process in order to service a kernel event 

associated with background processing. Furthermore, work conservation will drain 

existing queue contents before giving processes a chance to schedule more work. A 

series of queued background requests at a lower level may receive service while a 

foreground process must wait to schedule more requests at a higher level. This 

effectively disables prioritization, even with priority queues. 

Figure 2.3 shows the implicit priorities in the queue hierarchy for TCP processing in 

UNIX. Implicit processing priority increases from the left to the right. Device 

interrupts transfer data between the network interfaces and IP queues, and execute 

with the highest implicit priority (rightmost part of Figure 2.3). Only when these high-

priority queues become empty does the kernel start processing work queued at the 

next-lowest priority. In this example, transport protocol processing would then occur 

(middle part of Figure 2.3). Finally, only when no work remains at either the device 



 
39

level or the transport protocol level do user-level processes (leftmost part of Figure 

2.3) receive the CPU. 

One simple approach to provide idletime service would replace all resource schedulers 

in such a queue hierarchy with priority queues. Such a naïve approach is not suitable 

for general-purpose operating systems. Wide spread changes throughout the system 

are difficult to design and implement, require extensive testing, and can lead to API or 

service differences that cause application incompatibilities. Furthermore – as 

discussed in the next section in detail – priority queues alone are insufficient to isolate 

the foreground workload from the presence as idletime use. 

A useful idletime mechanism will thus consist of a small number of localized 

modifications to key resource schedulers in a hierarchy. Such a mechanism can 

effectively control preemption cost, and thus isolate foreground performance.  

send buffer socket send buffer device send queue NIC TX queue

receive buffer socket receive buffer IP receive queue NIC RX queue

w
ire

process socket layer network layer hardware

CPU scheduler transport protocol device interrupt link access protocol

TC
P 

pr
oc

es
sin

g

highest implicit processing prioritylowest implicit processing priority

 

Figure 2.3. Queues involved in network communication over TCP, showing implicit processing priorities in 
UNIX. 



 
40

2.3.3 Preemption Cost 

The largest challenge faced to support idletime use of available resource capacity is 

preemption cost. Aborting one request and switching to another involves some amount 

of work and in consequence incurs a delay. For example, switching the CPU from one 

process to another requires a context switch (swap of the register set, flush of the 

cache, etc.) before execution continues. Each time a resource switches from idletime 

to regular use, this preemption cost incurs. Without idletime use, the resource would 

have been unused – ready to serve the new request immediately. The presence of 

idletime use thus delays foreground processing. 

Figure 2.4 illustrates this preemption cost for a regular foreground request R by 

comparing scheduling without idletime use (top diagram) to scheduling in the 

presence of an idletime request I (lower diagram). In the lower diagram, idletime 

request I starts processing at t1 and is still active when R arrives at t2. The resource 

Time

Request Queue

Active Request

t1 t2 t3

I R R

Request Queue

Active Request R

R

t4 t5

R

Foreground
delay due to
preemption

XI

 

Figure 2.4. Preemption cost due to the presence of idletime use (bottom) compared to the non-idletime case 
(top). 



 
41

immediately starts preempting I, which incurs a preemption cost (depicted by X). 

Thus, R cannot start processing until t3, whereas it could start as early as t2 in the 

absence of I (top diagram). It also finishes correspondingly later at t5 instead of t4. 

Resources that frequently switch between different requests may have hardware 

support to minimize this overhead. One example is processors, which typically offer 

instructions to save and restore register sets to speed up context switches. Another 

example is customized I/O controllers for realtime systems [SPRUNT1988]. Such 

mechanisms can decrease foreground delay due to idletime scheduling, where they 

exist. 

However, most other resources do not support preemption at all. For such resources, 

higher-priority requests must wait until an active lower-priority one finishes. Direct-

memory-access (DMA) devices such as disk drives or network interfaces, which move 

data to and from memory without involving the CPU, fall into this category, because 

DMA transfers are usually non-preemptable. Idletime use of such a resource can 

significantly delay foreground processing, because processing times are usually much 

longer than preemption times. The delay while waiting for an active idletime request 

to finish will be much longer than waiting for the completion of a preemption 

operation. 

The worst-case scenario is a workload with unlimited idletime load, where the arrival 

rate of foreground requests is slightly lower than the service rate of the resource. In 



 
42

this case, the resource will start servicing a background request after each foreground 

request is finished, only to immediately preempt it when a new foreground request 

arrives. Each foreground request therefore incurs the preemption cost, and foreground 

delay and throughput are significantly affected.  

Foreground delay is even higher for resources that do not support preemption. In that 

case, foreground requests must wait while the active idletime use finishes. Service 

times are usually much higher than preemption costs, leading to a reduction of 

foreground performance of up to 50%. 

However, this worst-case scenario may not be frequent, and performance for more 

realistic workloads may still be acceptable. Most resource use tends to be bursty, such 

that a number of back-to-back foreground requests will preempt idletime use. In this 

case, the whole foreground burst only incurs a single preemption delay. 

Preemption delays vary greatly for different resources. A CPU context switch typically 

takes a few microseconds [LAI1996], whereas a disk request may take dozens of 

milliseconds. It may be possible to disable idletime use of resources for which the 

aggregate preemption cost (i.e., the impact on regular performance) becomes too great, 

but continue to allow it for other resources. However, this approach may block 

background workloads that try to use idle capacity of the loaded resource. A successful 

idletime mechanism must carefully control preemption costs to minimize delays for 

foreground processing. 



 
43

Additionally, a resource can eliminate the preemption cost in special cases where it 

knows the next occurrence of a foreground request. In such a case, it can stop idletime 

processing ahead of time, to push the preemption cost into the idle period. When the 

foreground request arrives, the resource is already idle and there is no delay. For 

certain periodic workloads, resources that require prior reservation, or jobs scheduled 

in advance (e.g., cron), such a scheme is possible. 

This special case was one inspiration for the introduction of preemption intervals. 

They are periods of time following foreground requests during which no idletime 

work will be started, even if no further foreground request are enqueued. In some 

sense, the preemption interval acts as a “phantom” foreground request. To waiting 

background requests, the resource appears busy executing phantom foreground work 

during the preemption interval, delaying them until its expiration. 

2.3.4 Tunability 

With idletime scheduling, preemption costs and the corresponding reduction in 

foreground performance cannot be completely avoided. To support a wide variety of 

workloads (and user delay tolerances), the behavior of an effective idletime 

mechanism should be tunable. 

One example is supporting different levels of aggressiveness in exploiting idle 

capacity. Higher levels allow higher idletime throughput, but may also incur higher 



 
44

foreground delays. Supporting different levels for different resources allows further 

customization of the mechanism to particular usage scenarios. 

2.3.5 Cache Pollution vs. Preload Effect 

Another issue with idletime use may be cache pollution. Many hardware and software 

caches exist in a typical computer system to speed up operation. They replicate 

frequently/recently used data in faster storage space, to reduce retrieval latency on 

future use.  

Caches are resources that benefit from using idle storage capacities. When caches 

themselves support idletime use, it can tag entries as foreground or background, and 

prevent new background entries from flushing existing foreground entries. 

However, in the absence of idletime support for caches – such as with caches in 

existing hardware – idletime processing may create cache state that flushes entries 

created by regular requests. This may increase the delay of a future foreground request 

that then cannot take advantage of the cached data. 

In these cases, it may be necessary to disable caching during idletime processing to 

prevent this effect [DOUGAN1999]. This will delay idletime use, but this performance 

decrease may be acceptable. Background tasks executing in idletime have by 

definition a lower importance (otherwise they should execute in the foreground), and 

their performance is of secondary concern. 



 
45

However, in other scenarios, leaving caching enabled during idletime use may 

increase the performance of future regular requests. Some studies indicate that 

speculative preloads with useful data can speed up later processing 

[PIERCE1994][KWAK1999]. 

An idletime mechanism should default to disabling caches during idletime processing 

when possible, to minimize potential foreground delays. A selective override for 

specific caches and workloads is a useful feature that would allow exploitation of pre-

load effects, where appropriate. An automated scheme that determines whether to 

enable or disable caching during idletime use could further improve performance. 

2.3.6 Isolation of Side Effects 

Isolation is the principle of hiding the side effects of idletime use from regular 

foreground processing. One obvious side effect is a decrease in foreground 

performance, on which priority queues and idletime preemption already concentrate. 

This section focuses on other, secondary side effects caused by the presence of 

idletime processing in the system. 

The general idea is that the execution environment visible to foreground processes in 

the presence of idletime use must be identical to a system without idletime use. For 

example, using capacity in the regular file system to store idletime data (even if ample 

space is available) is problematic, because the files themselves would then be visible 

to foreground processes, and could interfere with regular processing. Another example 



 
46

is an idletime process that binds to a specific network port and IP address – no 

foreground process can then bind to the same address/port pair. 

Ideally, the system would use idle resources to provide an isolated, virtual execution 

environment, in which idletime tasks run. This is similar to FreeBSD jails 

[KAMP2000], Linux vservers [HUWIG2003] or User Mode Linux [DIKE2001], which 

restrict the set of system calls that super-user processes can execute, to improve 

system security. Other operating systems support similar virtual “sandbox” execution 

environments. 

Isolation of idletime processing requires a set of capabilities from the sandbox 

environments that is different from their current focus on security. Sandboxes for 

supporting idletime processing must virtualize operating system state. Each idletime 

task executes in a separate sandbox, completely isolating their side effects from one 

another and from the regular foreground state. When idletime tasks finish successfully, 

the system can merge their respective state changes into the regular state visible to 

foreground processes. This atomic operation is similar to commit protocols used for 

databases, and may be even more challenging to realize. 

Complete isolation requires the elimination of all shared state between sandboxes. 

Establishing this property in existing operating systems – without complete software 

emulation of all hardware, as in VMware [SUGERMAN2001] – will be extremely 

difficult and require widespread changes. Consequently, although complete isolation is 



 
47

theoretically required to eliminate all possibilities for interference, it may be sufficient 

to virtualize a limited subset of operating system state to establish isolation in practical 

scenarios. 

2.4 Summary 

This chapter introduced the idea of productive use of idle resource capacity, and 

introduced how applications such as caches and prefetching schemes can benefit from 

such a service. It observed how the scheduling mechanisms in many current operating 

systems fail to provide this capability, how system architecture affects an idletime 

mechanism, and identified preemption cost as the main factor that delays regular 

foreground processing.  

The next chapter will propose a general, resource-independent idletime scheduler that 

addresses these challenges, and describe its operation in terms of a more formal 

model. 



 
48

3. Preliminary Work 

Chapter 2 motivated the need for idletime use of available resource capacity. It can 

improve a wide variety of applications and services, including prefetching 

mechanisms, caches, disk and network service optimizations, and applications such as 

process or data migration systems. Chapter 4 will present the main contribution of this 

research effort, a generic, resource- and workload-independent idletime scheduler 

based on preemption intervals. 

This chapter discusses preliminary work in idletime scheduling of network 

transmissions. It began the investigation into generic idletime scheduling that is the 

main contribution of this dissertation. 

Section 3.1 presents and evaluates several application-level mechanisms 

[EGGERT1999] that enable idletime service in the Apache web server [APACHE1995]. It 

enables speculative push caching in the LSAM Proxy Cache [TOUCH1998]. LSAM uses 

background multicasts of related web pages, based on automatically selected interest 

groups, to load caches at natural network aggregation points. The proxy reduces server 

and network load, and increases client performance. 

Experiments with the application-level mechanisms illustrate their effectiveness in 

establishing different service levels. However, the mechanisms do either not prevent 

degradation of foreground transmissions, or fail to utilize available capacity fully. 



 
49

They do thus not support the required properties for idletime service described in 

Chapter 2. 

Experience with the application-level mechanisms led to the investigation of kernel-

level schedulers for idletime network scheduling that could address these issues 

[EGGERT2001A][EGGERT2001B]. Section 3.2 presents a preliminary kernel-level 

mechanism for idletime network scheduling, and evaluates its effectiveness 

experimentally. It finds that although this scheduler is more effective in isolating 

foreground traffic from the presence of background transmissions, it also fails to 

utilize significant amounts of available capacity for idletime use. 

Furthermore, the mechanism’s principle method of controlling background load is by 

dropping idletime packets. For network transmissions, which recover from packet 

losses at higher layers, a drop-based mechanism is acceptable. For a generic idletime 

scheduler, however, dropping part of the workload is not generally permissible. The 

generic idletime scheduler presented in the remainder of this dissertation uses 

preemption intervals as a general-purpose alternative to dropping partial workloads. 

3.1 Application-Level Idletime Networking 

The World-Wide Web is a typical example of a client/server system. In a web 

transaction, clients send requests to servers; servers process them and send 

corresponding responses back to the clients. Concurrent transactions with a server 



 
50

compete for resources in the network and server and client end systems. Inside the 

network, messages contest for network bandwidth and with other messages flowing 

between the same end system pair and with other traffic present at the time. Inside the 

end systems, transactions compete for local resources while being processed. Servers 

implementing the process-per-request (or thread-per-request) model will allocate one 

process (or thread) to an incoming request. 

The current web service model treats all transactions equivalently according to the 

Internet best-effort service [CLARK1988]. Neither the network nor the end systems 

typically prioritize traffic. However, there are cases where having multiple levels of 

service would be desirable. Not all transactions are equally important to the clients or 

to the server, and some applications need to treat them differently. One example is 

prefetching requests for web pages by proxies; such speculative requests should 

receive lower priority than user-initiated, non-speculative ones. Another simple 

example is a web site that wishes to offer better service to paying subscribers. 

This section presents the design and implementation of three simple server-side, 

application-level mechanisms that approximate the idletime service model, in which 

background transactions never decrease the performance of concurrent foreground 

transactions. Slowing down the serving of background responses to make more 

resource capacity available to the average foreground response can approximate the 

ideal idletime service model. Experimental results show that the most effective 

application-level mechanism has an overhead on foreground performance of only 4-



 
51

17%. These results indicate that it is possible to provide effective background network 

service at the application-level. 

3.1.1 Application-Level Idletime Mechanisms 

This section presents the design and implementation of three server-side, application-

level background processing mechanisms that approximate a service model with two 

classes: Regular foreground transactions, and preemptable, lower-priority background 

transactions. The design assumes a server that implements the process-per-request 

model, with pools of foreground processes and background processes. Because all 

mechanisms are server-side modifications, request transmission always occurs in the 

foreground. The mechanisms will only control processing and sending of the 

responses. 

The key idea behind all three application-level idletime mechanisms is to slow down 

the background pool, thus making more resource capacity available to the average 

foreground process. The three mechanisms differ in how they slow down background 

processing. One assumption is that the operating system demultiplexes the request 

stream before it reaches the server. The server application consequently uses two 

sockets to accept foreground and background requests. 

The first mechanism limits resource usage of background processes by limiting 

concurrency. It imposes an upper bound on the number of processes in the background 

pool. If all background processes are busy, additional incoming background 



 
52

transactions are delayed (in the operating system) until a background process becomes 

available. The server does not enforce a bound on the foreground pool. Consequently, 

the average foreground transactions will experience less delay under an increasing 

background load, compared to a background transaction. 

The size of the background pool is a parameter tunable by the administrator of the web 

server, based on the allowable overhead on foreground traffic. The experimental 

evaluation below used a five background servers. Fewer background servers would 

result in less background traffic, which would make it difficult to compare the 

overhead of the idletime mechanisms. Using many more than five would reduce the 

service difference between foreground and background traffic classes. 

The second application-level idletime mechanism also limits the size of the 

background pool, but in addition also lowers the process priority of the background 

processes to the minimum. For CPU-bound servers, this approach should further 

reduce the impact of idletime transmission on concurrent foreground transactions, 

compared to the first mechanism. 

The two prior mechanisms directly reduce only CPU usage. They can only indirectly 

control usage of network bandwidth and other resources. The third application-level 

idletime mechanism limits the aggregate network transmission rate of background 

processes by coordinating and scheduling their send operations. Background processes 

intentionally slow their transmission, monitoring and explicitly pacing their sending 



 
53

rate by pausing while sending. Multiple background processes collaborate to split the 

bandwidth limit fairly. The rate limit is a parameter tunable by the administrator of the 

web server, based on the permissible overhead on foreground traffic. The experiments 

below use a rate limit of 1Mb/s. As with the first mechanism, a significantly lower 

limit would make comparisons of the idletime mechanisms more difficult, and a much 

greater limit would reduce the differences between the two service classes. 

The third mechanism also limits the size of the background pool to five processes 

running at the lowest process priority. Note that for the third mechanism, limiting the 

background pool not necessary to enforce service differentiation – the send-rate limit 

establishes this. Limiting the background pool will simply control the send rate for 

each response: With only one background process, background responses occur at the 

full rate permitted by the rate limit (but only one at a time). With more than one 

background process, multiple background responses will transmit concurrently, each at 

a fraction of the rate limit. Lowering the process priority is also not strictly necessary, 

but because it is an extremely simple addition, it was added to the third mechanism. 

One major issue with the third approach is that even if the network is underutilized, 

the background processes can never exceed the rate limit, because they have no means 

of detecting additional available network capacity. However, background transactions 

are not important by definition, so serving them at less-than-peak performance may be 

appropriate. The idletime scheduler presented in the remainder of this dissertation 

addresses this limitation. 



 
54

None of the three background processing mechanisms rely on kernel-level or network-

level support for service differentiation. However, if such support was available, they 

all could be easily modified to take advantage of such mechanisms. 

3.1.2 Server Bottleneck Resource 

An important step in designing an effective background processing mechanism is to 

locate the bottleneck resource of the system. Control of the bottleneck resource has 

primary influence on overall system behavior by granting or not granting the resource 

to processes. For example, in a CPU-bound system, a process that is not being granted 

the CPU cannot use other resources. Hence, the CPU scheduler controls system 

performance. In this scenario, network scheduling would have little effect on 

performance. A successful idletime mechanism will control the scheduling decisions 

of the bottleneck resource to optimize performance. 

Any resource of a web server (CPU, physical memory, disk, network) may become the 

bottleneck, depending on the kind of workload it is experiencing. This section present 

a simple experimental investigation to determine the bottleneck resource in two web-

serving scenarios: a web server connected to its clients by private, non-switched 

10Mb/s and 100Mb/s Ethernet links. The server was monitored under a growing 

request load generated by an increasing number of clients, each of which made 

requests at a fixed rate of (at most) ten requests per second. The aggregate request load 

exceeded 1200 requests per second, which was more than enough to load the server 

fully. 



 
55

The server machine was a 300MHz Pentium-II PC with 128MB of physical memory 

running FreeBSD 2.2.6. The kernel had been optimized for web serving by increasing 

the socket listen queue to 256 connections and increasing the MAXUSERS kernel 

parameter to 256. A modified Apache version 1.3b1 web server [APACHE1995] 

collected CPU, physical memory, page fault and physical disk I/O statistics. Server 

load was generated by a version of WebSTONE [TRENT1995] modified to gather more 

extensive per-request statistics. Each point in the graphs below averages data gathered 

during a five-minute period, in which several thousand requests were processed. No 

other traffic was present during the experiment. The network utilization hence simply 

corresponded to the amount of data transferred in a test period. 

Both experiments issue requests over the standard WebSTONE page set, which is about 

2MB in size and models a small, static web server. The entire file sets easily fit into 

the disk buffer cache of the server. Thus, the buffer cache will service repeated 

requests for the same file, and the disk subsystem was consequently mostly idle. 

Furthermore, all pages were static, i.e., no additional server-side processing (CGI 

scripts, database queries, etc.) was done.  

3.1.2.1 10Mb/s Ethernet 

The results for the 10Mb/s Ethernet case show that the server was network-bound 

during this experiment. The left graph of Figure 3.1 shows HTTP transaction 

throughput over the number of clients. Throughput quickly reached 7Mb/s and then 



 
56

settled around that number. A single bulk TCP connection can achieve around 7.6Mb/s 

over the same link (measured with Netperf [HP1995]).  

All other monitored resources were mostly idle: The server CPU utilization (right 

graph of Figure 3.1) was never higher than 25%. The experiments did also not fully 

utilize server memory; they caused no page faults. The disk subsystem was also idle; 

there were no physical (not served from the buffer cache) disk read operations. The 

disk output rate peaked at around 10 physical disk writes per five-minute test period, 

all of which were due to logging. The local file system can sustain several thousand 

physical disk writes per second at less than 25% CPU utilization, so the measured rate 

is not significant. 

3.1.2.2 100Mb/s Ethernet 

For 100Mb/s Ethernet, the server was CPU-bound. The right graph of Figure 3.1 

shows that the server CPU utilization rose rapidly to around 95%. Network throughput 

stagnated at around 30Mb/s, (left graph of Figure 3.1) which is well below the 

0
5

10
15
20
25
30
35

0 20 40 60 80 100 120

H
TT

P 
Th

ro
ug

hp
ut

 [M
b/

s]

Clients

10Mb/s Ethernet
100Mb/s Ethernet

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120

C
PU

 U
til

iz
at

io
n 

[%
]

Clients

10Mb/s Ethernet
100Mb/s Ethernet

 

Figure 3.1. HTTP network throughput (left) and server CPU utilization (right) for both 10Mb/s and 100Mb/s 
Ethernet. 



 
57

72.1Mb/s (measured with Netperf [HP1995]) that a single bulk TCP connection can 

achieve over the same link. The server was clearly not network-bound. The relatively 

low network throughput is likely to be an artifact of the WebSTONE benchmark, which 

only supports HTTP 1.0 and will thus open a new TCP connection for each 

transaction, causing significant CPU overhead. 

As in the 10Mb/s case before, the experiment did not cause any page faults or disk 

input operations. The measured physical disk output rate never exceeded 50 writes per 

five-minute test run; as explained in Section 3.1.2.1, this rate is not significant. 

3.1.3 Experimental Evaluation 

All three idletime mechanisms described in Section 3.1.1 were implemented in Apache 

version 1.3b1 [APACHE1995]. The server machine was a 300MHz Pentium-II PC with 

128MB of physical memory running FreeBSD 2.2.6. Two synchronized WebSTONE 

benchmark processes generated both foreground and background transactions 

[TRENT1995]. Each experiment kept foreground load at a fixed level while increasing 

background load over time. Increasing the background load will reduce foreground 

performance in a basic system. The three background processing mechanisms should 

reduce foreground performance degradation compared to the basic case. 

Measuring the response time and size of each transaction allows quantifying the effect 

of background traffic on foreground load. Because replies of different sizes have 

different response times, the results below normalize response times against the fastest 



 
58

measured time for the respective size for each network configuration. Normalized 

times are thus dimensionless. The best possible normalized response time is 1 (all 

responses took the minimum time). Because the experiments aggregate traffic from a 

number of clients, typical normalized times are 1-2 for light loads or 3-5 for heavier 

loads where foreground traffic has more self-interference. 

To characterize the variability in measured traffic, the results below report median and 

quartiles of normalized foreground response times for all transactions measured during 

a five-minute test run (typically several thousand transactions). As background load 

rises, the median should rise and the quartiles spread, indicating higher interference 

and variability. The ideal background processing mechanism will minimize these 

effects, resulting in a flat, low foreground performance curve and a low inter-quartile 

gap. 

3.1.3.1 10Mb/s Ethernet 

The first two graphs show foreground response times in the basic case with no 

background traffic present. With one service class, median performance grew up to 

40x worse (from 1.05 without background load to about 40) under light load (Figure 

3.2, top row, left). It grew about 15x worse (from 2.8 to 42) under heavy load (Figure 

3.2, top row, right). This case also saw a substantial increase in response time 

variation, as illustrated by the wide inter-quartile gap. Under heavy foreground load, 

there was substantial interference within the group of foreground connections. With no 

background traffic present, the median response time was 2-3x slower than under light 



 
59

load. This indicates that background requests can substantially reduce median 

performance in an unmodified system.  

The second row of Figure 3.2 shows the corresponding results from of the first 

idletime algorithm, where the server limited its background pool size to five. For both 

light and heavy foreground load, median performance only grew 5-6x worse. The 

simple idea of limiting the background pool resulted in a considerable improvement 

compared to the basic case. However, median performance decreased noticeably, and 

the variance in observed median performance was substantial, although smaller than in 

the basic case. This simple mechanism keeps median performance under 10x normal 

for half of all requests. 

The second idletime algorithm also lowers the process priority of the background 

processes to the minimum in addition to keeping the pool size limited to five servers 

(Figure 3.2, third row). Median performance under light load was unchanged from the 

previous case (Figure 3.2, third row, left). Median performance under heavy load, 

however, was marginally better than during the previous experiment: 4x worse 

compared to 5x before (Figure 3.2, third row, right). Performance variance was also 

virtually identical to the previous experiment. 



 
60

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50 60N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ + + +
+

+
+

+ + +
+

+ +
+

Quartiles

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50 60N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ +
+

+
+

+
+

+ + + + + +
+

Quartiles

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50 60N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ + + + + + + + + + + + +

+
Quartiles

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50 60N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+
+ +

+ + + + + + + + +
+

+
Quartiles

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50 60N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ + + + + + + + + + + + +

+
Quartiles

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50 60N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ +
+ + + + + + +

+ + +
+

+
Quartiles

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50 60N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ + + + + + + + + + + + +

+
Quartiles

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50 60N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ + + + + + + + + + + + +

+
Quartiles

N
o 

B
G

 P
ro

ce
ss

in
g

L
im

ite
d 

B
G

 P
oo

l
L

ow
-P

ri
or

ity
 B

G
 P

oo
l

R
at

e-
L

im
ite

d 
B

G
 P

oo
l

Light Foreground Load Heavy Foreground Load

Figure 3.2. Normalized median foreground response times (with first and third quartiles) for the baseline case 
and three different application-level idletime mechanisms over 10Mb/s Ethernet; both under light and 
heavy foreground load. 



 
61

As previously discussed, the CPU is not the bottleneck for the 10Mb/s Ethernet. Thus, 

even low-priority processes received enough CPU time to generate a substantial 

amount of network traffic. Process priorities are therefore not an adequate mechanism 

to establish different levels of service in this scenario. This result emphasizes the point 

that knowledge of the bottleneck resource is essential. 

The third idletime mechanism rate-limited background sends (Figure 3.2, bottom row). 

It performed best, showing very low overhead and variance under both foreground 

loads. With light load, median performance grew by only 4%, and variance was 

extremely low (Figure 3.2, third row, left). Under heavy foreground load, median 

performance decreased by less than 18% (Figure 3.2, third row, right). 

3.1.3.2 100Mb/s Ethernet 

The performance expectations for the experiments over 100Mb/s Ethernet are 

different, because of the difference in bottleneck resources. As before, performance 

(both median and variance) decreased in the basic case with increasing background 

load: For light foreground load, it grew almost 10x worse: from 1.3 with no 

background load to about 11.6 (Figure 3.3, top row, left). For heavy load, it grew from 

2.8 to almost 16: over 5x worse (Figure 3.3, top row, right). Variance in both cases was 

extremely high. 

Again, substantial interference exists within the group of foreground connections 

alone. With no background load, median performance for heavy load is more than 



 
62

twice as bad as for light load. Compared to the 10Mb/s case, the normalized response 

times here are about 50% lower than before. This is because in the network-bound 

10Mb/s case, increases in response time are mostly due to packet loss and the resulting 

retransmissions. The 100Mb/s case has plenty of idle network capacity. Thus, 

increases in response time are mostly due to queuing inside the kernel.  

Limiting the background pool improved both median performance and its variance 

under both sets of foreground load (Figure 3.3, second row). As for the 10Mb/s case, 

limiting the size of the background pool is an effective first step to establish different 

levels of service. Under light foreground load, median performance only grew worse 

by a factor or two (Figure 3.3, second row, left). It only increased by 40% under heavy 

load (Figure 3.3, second row, right). Again, this very simple mechanism could limit 

the impact background use has on concurrent foreground transactions. 

The second idletime mechanism also lowered the priority of the background 

processes. This mechanism tries to address CPU-bound scenarios specifically. The 

experimental results indicate that the mechanism is not successful. Under both light 

and heavy background loads (Figure 3.3, third row), median performance is only 

marginally better than in the previous case, where the background servers ran at the 

same priority as the foreground ones (Figure 3.3, second row). 



 
63

0
2
4
6
8

10
12
14
16

0 20 40 60 80 100 120N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ + + + + +
+

+ +
+ +

+ + +

+
Quartiles

0
2
4
6
8

10
12
14
16

0 20 40 60 80 100 120N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ + +
+

+
+ + +

+ +
+ +

+
++

Quartiles
N

o 
B

G
 P

ro
ce

ss
in

g
L

im
ite

d 
B

G
 P

oo
l

 0
2
4
6
8

10
12
14

0 20 40 60 80 100 120N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ + + + + + + + + + + + + +

+
Quartiles

0
2
4
6
8

10
12
14

0 20 40 60 80 100 120N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ + + + + + + + + + + + + +

+
Quartiles

16 16

0
2
4
6
8

10
12
14
16

0 20 40 60 80 100 120N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ + + + + + + + + + + + + +

+
Quartiles

0
2
4
6
8

10
12
14
16

0 20 40 60 80 100 120N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ + + + + + + + + + + + + +

+
Quartiles

L
ow

-P
ri

or
ity

 B
G

 P
oo

l

0
2
4
6
8

10
12
14
16

0 20 40 60 80 100 120N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ + + + + + + + + + + + + +

+
Quartiles

0
2
4
6
8

10
12
14
16

0 20 40 60 80 100 120N
or

m
al

iz
ed

 R
es

po
ns

e 
Ti

m
e

Background Clients

Median

+ + + + + + + + + + + + + +

+
Quartiles

R
at

e-
L

im
ite

d 
B

G
 P

oo
l

Light Foreground Load Heavy Foreground Load

Figure 3.3. Normalized median foreground response times (with first and third quartiles) for the baseline case 
and three different application-level idletime mechanisms over 100Mb/s Ethernet; both under light 
and heavy foreground load. 



 
64

One possible explanation for this lies in the nature of the 4.4BSD CPU scheduler 

[MCKUSICK1996]. It lowers the priority of processes that have accumulated more CPU 

time than others have, and it raises the priority of blocked process. These two features 

of the scheduler counteract the mechanism’s intention to use priorities to slow down 

background processes further. 

Limiting the transmission rate of the background pool works best in this scenario, as it 

did before in the 10Mb/s case. Under light foreground load, median performance only 

degrades by about 6%, and the performance variance is extremely small (Figure 3.3, 

bottom row, left). Under heavy foreground load, median performance decreases by 

11% (Figure 3.3, bottom row, left). This is only a moderately better than the first two 

algorithms. However, rate limiting significantly reduces response time variance, as 

indicated by the quartiles. 

3.1.4 Discussion 

An important first result of the experiment presented in Section 3.1.3 is that 

application-level mechanisms can provide substantially different levels of service. 

Even the very simple approach of limiting the background server pool works well in 

both experimental scenarios. It reduces median foreground response times to 5-10x the 

minimum for the 10Mb/s and 100Mb/s cases. 

A surprising result is that the second mechanism, which also lowered the processing 

priority of a limited background pool, did not result in the expected improvement over 



 
65

the first one, which just limited the pool size. Even in the CPU-bound scenario, where 

process priorities should be most useful, lowering processing priorities is ineffective. 

As described above, the BSD CPU scheduler eradicates the difference between high-

priority and low-priority processes by rewarding I/O. On other systems, especially 

non-Unix systems, this may be different. However, because the mechanism improves 

median performance in minor ways in some cases and does not reduce it in the other 

ones, lowering the priority of the background pool can be a useful addition to other 

mechanism. 

Of the three application-level idletime mechanisms, limiting the transmission rate of 

background processes performs best. In all experiments, median foreground 

performance decreased only by about 4-17% even under substantial background load. 

One major issue with rate-limiting background transmissions is the inability of the 

mechanism to utilize more idle capacity than the fixed rate limit. If the operating 

system would provide accurate information about available capacity on short 

timescales, adapting the rate limit dynamically became possible. However, traditional 

operating systems do not provide such information, and applications have no means of 

passively detecting available network capacity.  

Idletime mechanisms implemented inside the operating system can use internal kernel 

information to eliminate these issues. Kernel-level mechanisms may thus both provide 

better isolation of the foreground workload in the presence of idletime use, and utilize 



 
66

more idle capacity for background work. The next section presents a preliminary 

idletime networking mechanism implemented as a kernel modification. Chapter 4 and 

the remainder of this dissertation then present a generic kernel-level idletime 

mechanism based on preemption intervals. 

3.2 Kernel-Level Idletime Networking 

Ideally, in a network with support for idletime use, background packet processing will 

only occur when resources would have been otherwise idle. Consequently, the 

presence of background traffic would be undetectable when observing foreground 

transmissions. In such a network, the background class can only use resources not 

already consumed by foreground transmissions. Starvation may occur: If foreground 

traffic saturates a link, background traffic will not receive service. Chapter 2 presented 

this distinction in service in detail. 

Experimental results presented in the next section show that current operating systems 

are not effective in establishing such different service levels for network traffic. The 

event-driven, asynchronous nature of network stack processing interferes with 

attempts to use CPU-scheduler-based mechanisms as offered by current systems to 

control network send behavior. 

Section 3.2.2 presents the design of a simple kernel-level mechanism to support 

idletime networking. It is a minimal extension of the current BSD network stack. The 



 
67

modifications concentrate on the sender’s network layer; transport protocols and 

socket API remain unchanged. 

Section 3.2.3 presents an experimental evaluation of a prototype implementation of the 

new mechanism in the BSD network stack. The results suggest that it is effective in 

establishing idletime network service. Using the new mechanisms, foreground senders 

can achieve 97-99% of the baseline throughput, where no background use is present. It 

hence effectively isolates foreground transmissions from concurrent background 

traffic. 

3.2.1 Effect of CPU Scheduling on Network Transmissions 

One of the main tasks of an operating system is to control and schedule application 

access to system resources. To support a wide variety of applications, a general-

purpose operating system employs simple and predictable schedulers, trying to 

provide fair service to all users of a resource. 

Because the CPU has traditionally been the bottleneck resource in a system, its 

scheduler is typically more evolved compared to other resource schedulers. UNIX 

systems use a multilevel feedback queue [MCKUSICK1996]. This scheduler favors 

interactive, bursty processes that do not fully utilize their allocated CPU quantum over 

compute-bound batch jobs, which do. It rewards bursty processes by increasing their 

priority, and punishes compute-bound ones by lowering theirs. Most I/O-bound 



 
68

processes are bursty – they block during device operations – and thus achieve high 

CPU priorities. 

Commonly, the CPU scheduler offers the user processes some degree of control over 

their priorities through the nice utility. Non-privileged processes may thus lower their 

priority from the default. (Increasing the priority is restricted to privileged processes). 

Some POSIX-compliant systems [POSIX1993] offer three distinct priority classes for 

processes: realtime, regular, and idletime. A separate multilevel-feedback queue 

manages each class. Processes in higher classes preempt any lower class ones. 

Starvation of lower-class processes occurs when higher-class load increases to 

saturation. 

Simple first-in-first-out (FIFO) schedulers organize access to most other resources. 

Though FIFOs by themselves do not assure fairness, they can do so in combination 

with a fairness-enforcing CPU scheduler. This is, because a process cannot issue any 

resource requests without a CPU to run on. FIFOs and other schedulers typically do 

not allow processes to influence their scheduling decisions. 

Thus, current systems offer only two candidate mechanisms to implement idletime 

networking via process priorities: nice and POSIX scheduling. The remainder of this 

section will experimentally evaluate whether idletime networking approaches based on 

CPU schedulers are effective. 



 
69

3.2.1.1 Experimental Setup 

In these experiments, two copies of the same benchmark process run in parallel on a 

single host. The benchmark process is network-bound. It simply tries to send as much 

pre-generated random data to a second machine as possible. At the end of the 

experiment, the process reports the amount of data successfully sent. One of the two 

benchmark processes is the foreground sender, the other one the background sender.  

Each benchmark process uses a fixed number (here: 3) of either TCP or UDP 

connections to send its traffic. A single TCP connection cannot overload an isolated 

network link due to TCP’s congestion control algorithm. When sending with TCP, the 

benchmark blocks until one or more connections become writeable. It then writes a 

chunk of data on the writable descriptors and starts over. When using UDP, the 

benchmark process sends one message over each descriptor until the send call fails. 

This indicates that the outbound device queue is full, and the process allows it to drain 

by sleeping for 10ms before starting over. 

One variable of the experiments is the intensity of the foreground sender. It controls 

the fraction of CPU time a benchmark process spends in the previously described 

sending loop. For a fraction of 0.1, for example, the process will only try to send 

traffic for 10% of its allocated CPU quantum. On BSD systems, the default quantum is 

100ms, meaning the benchmark would generate send bursts of 10ms before sleeping 

for 90ms. 



 
70

For each combination of transport protocol (TCP and UDP) and send intensity (full: 

intensity = 1, and light: intensity = 0.1), the experiment runs for 1 minute. The 

resulting throughput measurements are normalized against the maximum throughput a 

single foreground sender achieves in the absence of background traffic. The graphs in 

the remainder of this section show mean normalized throughputs with 95% confidence 

intervals over a series of 10 iterations. 

The sending host that runs the two load-generators and the receiving host are identical 

workstations with 300MHz Pentium II processors running release 4.2 of the FreeBSD 

operating system. They are located on an isolated, switched, full-duplex 100Mbps 

Ethernet. This setup is network-bound; one machine can satiate the link with a CPU 

load of 55%. 

The metric for effectiveness of the idletime networking mechanism is the throughput 

of the foreground sender in the presence of background traffic compared to the basic 

case where no background traffic is present. Better idletime mechanisms will yield 

higher foreground throughputs. An ideal idletime mechanism will allow the 

TCP BG Sender UDP BG Sender
0

50

100

FG
 T

C
P 

Th
ro

ug
hp

ut
 [%

]

PO
SI

X
Ni

ce No PO
SI

X
Ni

ce No

TCP BG Sender UDP BG Sender
0

50

100

FG
 U

D
P 

Th
ro

ug
hp

ut
 [%

]

PO
SI

X
Ni

ce No PO
SI

X
Ni

ce No

Figure 3.4. Normalized mean throughput with 95% confidence intervals of a foreground sender under unlimited 
load in the basic case (No) and with two CPU-based idletime networking mechanisms (Nice and 
POSIX), using TCP (left graph) and UDP (right graph). 



 
71

foreground sender to reach 100% of the throughput it achieves in the absence of 

background traffic. 

3.2.1.2 Experimental Evaluation 

In the first experiment, the foreground sender sends TCP traffic at full intensity to the 

receiver. The left diagram in Figure 3.4 shows the measured and normalized 

throughput rates together with 95% confidence intervals (narrow white bars 

overlaying the wider gray bars). 

With a background TCP or UDP sender, neither the POSIX nor the nice idletime 

mechanism can establish idletime network service that significantly improves on the 

basic case. The differences in throughput lie within the confidence intervals of the 

measured series. Furthermore, for a UDP background sender, this experiment 

demonstrates the worst-case scenario, because a background sender without rate-

control can virtually shut down foreground transmissions. An effective idletime 

mechanism must adapt to this scenario, and protect foreground transmissions from 

idletime traffic. Both examined CPU-based schedulers fail to do so. The foreground 

sender only achieves around 5% of the possible throughput. 

The right diagram in Figure 3.4 shows the case of a foreground UDP sender under 

background traffic created by TCP or UDP sources. With a TCP background sender, 

this case is the inverse of the worst-case scenario presented above: Here, the 



 
72

foreground UDP sender monopolizes the link. Foreground UDP throughput is over 

99% for all three cases, even the basic one. 

If the background sender also uses UDP, the POSIX scheduler noticeably outperforms 

the nice one: 90% throughput versus 50%. Variations in throughput are also higher, as 

indicated by larger confidence intervals. 

In the second experiment, the foreground sender is only active for 10% of its time 

quantum (= 10ms). Figure 3.5 shows the results for this case. When the foreground 

sender uses TCP to transmit its traffic bursts, the POSIX scheduler offers small 

foreground performance improvements of 5-10% over the basic case for both TCP and 

UDP background senders. Throughput does not increase with the nice idletime 

mechanism. With a UDP background sender, the POSIX scheduler increases 

performance 90% over both the basic case and the nice mechanism. Both the basic 

scheduler and nice are extremely ineffective in giving higher priority to bursty 

foreground traffic: it only achieves 1-3% throughput. 

TCP BG Sender UDP BG Sender
0

50

100

FG
 T

C
P 

Th
ro

ug
hp

ut
 [%

]

PO
SI

X
Ni

ce No PO
SI

X
Ni

ce No

TCP BG Sender UDP BG Sender
0

50

100

FG
 U

D
P 

Th
ro

ug
hp

ut
 [%

]

PO
SI

X
Ni

ce No PO
SI

X
Ni

ce No

Figure 3.5. Normalized mean throughput with 95% confidence intervals of a foreground sender under bursty load 
in the basic case (No) and with two CPU-based idletime networking mechanisms (Nice and POSIX), 
using TCP (left graph) and UDP (right graph). 



 
73

The experimental results presented in this section demonstrate that CPU-based 

mechanisms of current operating systems are not sufficient to implement idletime 

networking. Though scheduling background senders at POSIX idletime priority 

improves foreground performance in some scenarios (mainly for UDP senders), even 

then total foreground throughput only reaches 90% of the maximum. For other cases 

(e.g., foreground TCP senders), the POSIX mechanism only offers small performance 

improvement of 5-10%, increasing total throughput to 5-70%. 

An effective mechanism to support idletime networking would achieve foreground 

send performances close to 100% in all of the above scenarios. It would also utilize 

significant portions of available idle capacity to transmit background traffic. The next 

section will present a kernel-based idletime scheduler for the BSD network stack that 

aims at improving upon the CPU-based mechanisms. Section 3.2.3 will evaluate the 

performance of the new scheduler. 

3.2.2 Kernel-Level Idletime Mechanism 

The key issue with the two CPU-scheduler-based candidate mechanisms for idletime 

networking lies in the event-driven nature of kernel network processing. Nearly all 

network processing – with the notable exception of UDP send operations – happens 

asynchronously with respect to application-level execution. Device interrupts trigger 

packet transmissions and receptions. Packet receptions trigger incoming transport 

protocol processing, which in turn may unblock processes waiting for data reception 



 
74

on a socket. For TCP, packet receptions (and to a lesser degree, kernel timeouts) 

trigger packet transmissions. 

In a sense, the network stack is an event-based system, where event priorities are 

lower layers have higher priorities (see Figure 3.6). As demonstrated by the 

experimental results in Section 3.2.1.2, the previously examined idletime mechanisms 

based on CPU scheduling have only very limited impact in such a system. 

A second issue is the use of FIFOs for all kernel queues. The processing order of a 

FIFO queue is identical to the enqueue order, which may cause a queue's consumers to 

process earlier arriving background data before foreground data. This must not occur 

in a system supporting idletime networking. 

3.2.2.1 Design Goals 

The network stack is a complicated system, and many applications rely on its API 

(socket interface) and service semantics. Therefore, it is critical to avoid fundamental 

changes to the network stack. Additionally, much effort went into designing and fine-

send buffer socket send buffer device send queue NIC TX queue

receive buffer socket receive buffer IP receive queue NIC RX queue

w
ire

process socket layer network layer hardware

CPU scheduler transport protocol device interrupt link access protocol

TC
P 

pr
oc

es
sin

g

highest implicit processing prioritylowest implicit processing priority

 

Figure 3.6. Network stack queuing and processing. 



 
75

tuning the Internet’s transport protocols. Operating system extensions for idletime 

networking must not modify these transport protocols, to avoid incompatibilities with 

current standards. 

It is also impractical to change all network drivers to support idletime networking, so 

hardware-dependent driver code must not change for idletime networking extensions. 

Note that part of the driver code is common to all devices of the same family; these 

routines could be safe to modify. 

In addition, for end-to-end idletime networking, routers in the network must 

distinguish between foreground and background packets. This section assumes 

network support for idletime networking is available and the network handles packets 

according to their service marks. Chapter 5 discusses required network support in 

detail. 

In summary, a design for OS extensions for idletime networking must be a simple 

extension of the current socket layer, must not modify the transport layer, and must not 

require changes to the hardware-dependent parts of device drivers – consequently, 

they must mainly extend the network layer. 



 
76

3.2.2.2 Kernel-Level Design 

One issue identified earlier in this section was the use of FIFOs for all queues in the 

network stack. To support idletime networking, two-level priority queues must replace 

most FIFOs in the network stack. 

Part of the KAME IPv6/IPsec package [JINMEI1998] for BSD is the ALTQ framework 

[CHO1998] of alternate queuing disciplines. ALTQ replaces the outgoing standard 

FIFO queues of device drivers with configurable queuing disciplines, including 

priority queues. ALTQ already offers filtering of marked packets into a traffic classes. 

A small modification to the ALTQ priority queue that implements a drop preference 

for lower-priority when the queue is full establishes the desired behavior. 

The service level of the network stack must not decrease for applications that are 

unaware of the presence of idletime networking service. Hence, the kernel must not 

send their packets in the background by default. Applications that are aware of the 

idletime service class may explicitly indicate the desire to transmit in the background 

to the kernel. The socket layer offers socket options to set user-configurable options on 

a per-descriptor basis. Thus, the only socket-layer change needed is a new socket 

option (SO_BACKGROUND) that indicates that the network stack should treat all 

traffic from or to a socket as background traffic. 

Because of the event-based nature of the lower half of the kernel, drivers will transmit 

packets as soon as they enter their device queue: transmitter activation follows each 



 
77

enqueue operation. Because the driver code executes at a higher implicit priority than 

the network layer (see Figure 3.6), the kernel typically transmits the packet before 

another one can be enqueued. Consequently, the network layer must verify if idletime 

packets may be send at a particular time (see below) before it enqueues them into the 

device queue. 

The key idea behind the simple kernel-level mechanism for idletime network service 

is never to send background packets to a destination when a foreground sender is 

using the same outgoing interface. Instead, the network layer should drop these 

idletime packets, signaling an out of buffers (ENOBUFS) error condition. UDP 

senders must already be prepared to handle this error condition, because it occurs 

when the device queue fills up. They also must be prepared to handle data loss at the 

application. TCP senders will take the packet drop as an indication of congestion, 

lower the rate of the background sender, and recover the lost data through TCP 

retransmissions. 

There are several possible methods to determine if an interface is in use by a 

foreground process before enqueuing a background packet into a device queue. The 

simplest approach is to check whether a foreground protocol control block (PCB) 

exists that uses the same outgoing interface. Although this simple approach is 

effective, it is also too restrictive: A single foreground TCP connection prevents the 

transmission of any background traffic– even while it is idle. 



 
78

A more effective heuristic for detecting active foreground senders would not only 

check for the presence of a PCB, but also use additional means to determine if the 

PCB is an active user of the interface. For example, it could check if the socket 

associated with the PCB had any queued data in its send buffer. This would indicate an 

active sender. The prototype implementation evaluated in the next section uses this 

technique. 

Active UDP senders are more difficult to identify. Unlike TCP, UDP does not buffer 

any data at the socket layer. This disables the heuristic described above. Furthermore, 

UDP write operations are non-blocking. They either succeed in enqueuing data into 

the device queue, or fail and return to the user process with an error. No kernel state 

exists that allows determining precisely whether a UDP sender is active at any given 

time. 

The design for idletime networking thus uses the following heuristic to check for 

active UDP senders. For each UDP PCB, the network layer will check if the 

corresponding process is sleeping or not. A sleeping process indicates (paradoxically) 

an active UDP sender. This heuristic depends on the common structure of 

implementing UDP clients, which send until they fill the device queue or run out of 

data, then sleep to enforce a send rate limit. The implications of these assumptions are 

discussed in the next section. 



 
79

3.2.2.3 Discussion 

Several issues exist with the proposed design. First, the decision to enforce idletime 

networking at the network layer causes background packets to undergo socket and 

transport layer processing, only to be dropped when foreground senders use the same 

outgoing interface. Enforcing idletime networking at a higher layer would not incur 

this performance hit. This approach may prove problematic for more compute-

intensive transport protocols, such as encrypted or tunneled flows. 

A second issue is the per-packet PCB-lookup overhead to determine the active 

foreground senders for the same interface. The current implementation adds list of 

pointers to PCBs to each interface to limit the impact of this search. Other 

optimizations may further mitigate this overhead, but lie outside the scope of the 

initial prototype. 

As discussed in the previous section, detecting active UDP senders at the network 

layer is difficult. The kernel can gain information about TCP connections and their 

corresponding processes from internal state. For UDP senders, no such state exists 

inside the kernel, because UDP senders manage it inside their respective applications. 

One possibility could be to extend UDP to queue data at socket send buffer, and to 

drain it as the interface queue empties. This would allow the TCP technique to check 

for active senders to extend to UDP senders. However, this approach significantly 

modifies the traditional UDP service semantics, and may fail to support existing 

applications. 



 
80

3.2.3 Experimental Evaluation 

This section repeats the experiments presented in Section 3.2.1.2 to evaluate the 

effectiveness of the idletime networking mechanism designed in the previous section. 

The experimental setup is unchanged from Section 3.2.1.1, except that the background 

senders are now using the new network idletime scheduler. 

The following sections present two sets of experiment; one with unlimited background 

load, and one with a bursty background sender that only offers 10% load. 

3.2.3.1 Unlimited Background Load 

The left graph in Figure 3.7 shows how a fully loaded TCP foreground sender behaves 

in the presence of background load generated by TCP or UDP senders that use the 

kernel-level idletime network scheduler. In both cases, foreground throughput is over 

99% of the baseline – a 50% improvement from the basic case. 

The right graph of Figure 3.7 displays the result for a UDP foreground sender. Again, 

foreground throughput under unlimited background load reaches 97-99% for both 

TCP BG Sender UDP BG Sender0

50

100

FG
 T

C
P 

Th
ro

ug
hp

ut
 [%

]

IT
N No IT

N No

TCP BG Sender UDP BG Sender0

50

100

FG
 U

D
P 

Th
ro

ug
hp

ut
 [%

]

IT
N No IT

N No

Figure 3.7. Normalized mean throughput with 95% confidence intervals of a foreground sender under unlimited 
load in the basic case (No) and with a kernel-level idletime mechanism (ITN), using TCP (left graph) 
and UDP (right graph). 



 
81

UDP and TCP background traffic. With TCP background traffic, this is no 

improvement over the basic case. This is the worst-case scenario for TCP, due a high 

volume of congestion-unregulated UDP traffic. In fact, throughput is 1-2% lower, 

possibly due to processing overhead of the idletime mechanism. With a UDP 

background sender, performance increases by about 55% to 99%. 

Figure 3.8 shows the raw, un-normalized foreground and background throughput 

numbers for the same experiment as a stacked bar graph. The dashed line indicates the 

baseline throughput that the foreground sender achieved when no idletime use is 

occurring. The graphs show foreground throughput as lightly shaded bars and 

background throughputs as darker shades of gray. 

Without the kernel-level idletime scheduler (bars labeled No in Figure 3.8), 

foreground and background transmissions share the link fairly, each receiving 50% 

capacity. With the idletime scheduler (bars labeled ITN in Figure 3.8), the foreground 

sender receives full link capacity, and idletime use stalls. 

Baseline TCP BG Sender UDP BG Sender
0

20

40

60

80

100

FG
 U

D
P 

Th
ro

ug
hp

ut
 [M

b/
s]

Jus
t F

G
No

IT
N No

IT
N

Baseline TCP BG Sender UDP BG Sender
0

20

40

60

80

100

FG
 T

CP
 T

hr
ou

gh
pu

t [
M

b/
s]

Jus
t F

G
No

IT
N No

IT
N

Figure 3.8. Mean foreground (light gray) and background (dark gray) throughputs with 95% confidence intervals 
under unlimited background load in the baseline case (Just FG), without idletime scheduling (No), 
and with a kernel-level idletime networking mechanism (ITN). Left graph shows TCP foreground 
throughputs, right graph UDP foreground throughputs. 



 
82

In this first experiment with unlimited background load, the idletime network 

scheduler is effective in isolating foreground traffic from the presence of any 

background traffic in all four scenarios. 

3.2.3.2 Limited Background Load 

The next experiments look at the performance of a bursty foreground sender using the 

kernel-level idletime network scheduler. This background sender uses only 10% of its 

allocated CPU cycles to generate load. For a TCP foreground sender (left graph in 

Figure 3.9), the kernel-level idletime mechanism improves foreground throughput 

between 35- 99% baseline for both TCP and UDP background traffic. 

For a UDP foreground sender (right graph in Figure 3.9), the idletime method also 

increases throughput to 99% for both TCP and UDP background traffic. 

With a TCP background sender, this is a minor improvement of 5% over the basic 

case. Again, this experiment models the worst-case scenario for TCP, due to the 

presence of unlimited UDP traffic. For a background UDP sender, the performance 

TCP BG Sender UDP BG Sender0

50

100

FG
 U

D
P 

Th
ro

ug
hp

ut
 [%

]

IT
N No IT

N No

TCP BG Sender UDP BG Sender

50

100

FG
 T

C
P 

Th
ro

ug
hp

ut
 [%

]

IT
N No IT

N No

Figure 3.9. Normalized mean throughput with 95% confidence intervals of a foreground sender under bursty load 
in the basic case (No) and with a kernel-level idletime mechanism (ITN), using TCP (left graph) and 
UDP (right graph). 



 
83

increase is around 90% – bursty foreground UDP traffic received very little service in 

the basic case, now its performance is close to the baseline maximum. 

Figure 3.10 shows the raw, un-normalized foreground and background throughput 

numbers for the same experiment as a stacked bar graph, similar to Figure 3.9 for the 

previous experiment. As before, lightly shaded bars indicate foreground throughput, 

darker shades indicate background throughput. Figure 3.10 illustrates a key deficiency 

of the preliminary scheduler for idletime network service presented in this section. 

Although it is effective at isolating foreground performance from the presence of 

idletime transmissions, it fails to utilize significant amounts of available capacity. 

With a foreground TCP sender, the idletime mechanism stalls a concurrent background 

TCP flow almost completely (Figure 3.10, left graph). Meanwhile, over 70% of the 

link capacity remains idle. An effective idletime mechanism should utilize this 

capacity for background traffic. A UDP background sender achieves approximately 

15Mb/s throughput, but also leaves over 50% of the link capacity idle unutilized. 

Baseline TCP BG Sender UDP BG Sender
0

20

40

60

80

100

FG
 T

CP
 T

hr
ou

gh
pu

t [
M

b/
s]

Jus
t F

G
No IT

N No IT
N

Baseline TCP BG Sender UDP BG Sender
0

20

40

60

80

100

FG
 U

D
P 

Th
ro

ug
hp

ut
 [M

b/
s]

Jus
t F

G
No

IT
N No

IT
N

Figure 3.10. Mean foreground (light gray) and background (dark gray) throughputs with 95% confidence intervals 
under bursty background load in the baseline case (Just FG), without idletime scheduling (No), and 
with a kernel-level idletime networking mechanism (ITN). Left graph shows TCP foreground 
throughputs, right graph UDP foreground throughputs. 



 
84

For a foreground UDP sender, the results are even worse. The idletime scheduler stalls 

both TCP and UDP background senders completely, and leaves over 80% of the link 

capacity unused (Figure 3.10, right graph). 

These results show that although the idletime scheduler is effective in maintaining 

foreground throughputs at over 95% of the baseline performance, it fails to use 

significant amount of idle capacity for background transmissions. Due to the low 

idletime performance even in the presence of significant available capacity, the 

usefulness of the preliminary idletime network scheduler is questionable. 

3.2.4 Discussion 

The experimental results presented in Section 3.2.3 show that the preliminary kernel-

level idletime network scheduler is effective in isolating foreground traffic from the 

presence of background traffic. In all investigated scenarios, foreground performance 

reaches 97-99% of the baseline case, in which no background traffic is present. This 

effectively isolates foreground transmissions from the presence of idletime use. 

However, due to its inability to utilize available idle capacities for idletime use, the 

effectiveness and usefulness of the preliminary scheduler remain doubtful. 



 
85

3.3 Summary 

This chapter presented preliminary work in idletime scheduling for network 

transmissions. Section 3.1 evaluated several application-level mechanisms for idletime 

network service implemented in the Apache web server [APACHE1995]. Experiments 

with the application-level mechanisms illustrated their effectiveness in establishing 

different service levels. However, the mechanisms did either not prevent degradation 

of foreground transmissions, or failed to utilize significant amounts of available 

capacity. 

Section 3.2 presented a preliminary kernel-level mechanism for idletime network 

scheduling, and evaluated its effectiveness experimentally. It found that although the 

kernel-level scheduler is more effective in isolating foreground traffic from the 

presence of background transmissions, it also failed to utilize significant amounts of 

available capacity for idletime use. 

Another common limitation of both application- and kernel-level approaches is their 

focus on network scheduling. The application-level mechanism carefully determined 

the bottleneck resource of the web server, and used a specialized mechanism to control 

the application’s use of the bottleneck resource. Though effective, this approach will 

not generalize to arbitrary resources. 

Likewise, the kernel-level mechanism’s principle method of controlling background 

load was dropping idletime packets. For network transmissions, which recover from 



 
86

packet losses at higher layers, a drop-based mechanism was acceptable. However, a 

generic idletime scheduler cannot simply drop part of the workload.  

The remainder of this thesis presents a generic, resource- and workload-independent 

idletime scheduler based on preemption intervals, which addresses the limitations of 

the preliminary mechanisms. 



 
87

4. Idletime Scheduling with Preemption Intervals 

Chapter 2 identified preemption costs as the key factor that controls foreground delay. 

In the worst case, every foreground request may require preemption of background 

work before receiving service, potentially resulting in significantly lower foreground 

performance. 

This chapter proposes a scheduling mechanism for idletime use that minimizes impact 

on foreground performance for mixed workloads that incur preemptions. It establishes 

prioritization through priority queuing, and supports preemption when the underlying 

hardware and software can support it. The scheduler is also effective for resources that 

do not support preemption and require accordingly high context-switch costs. The first 

sections of this chapter will give an overview and discussion of the general idea. Later 

sections will formally define this mechanism and present a quantitative model to 

predict the general behavior of the mechanism. Chapter 5 describes a prototype 

idletime implementation for different resources in a real operating system and Chapter 

6 evaluates the effectiveness of the prototype in a series of benchmarks. 

The key feature of the proposed mechanism is limiting the aggregate preemption cost 

by introducing a preemption interval. A preemption interval is a time period following 

each serviced foreground request during which no background request will be started 

– the resource will remain idle, even when background requests are queued. The 



 
88

preemption interval limits the cost to at most a single preemption per interval, when 

the preemption interval length is a multiple of the service time. 

A similar idea exists in CPU scheduling. Instead of performing a context switch 

among processes (preemption) after each executed instruction, a CPU scheduler 

amortizes the cost of a context switch over a longer period (CPU quantum), during 

which a process can run without interruption. However, as previously discussed, the 

preemption interval for idletime scheduling only follows foreground requests, not 

idletime requests. 

The basic operation of the proposed mechanism is as follows: the resource scheduler 

begins a preemption interval whenever an active foreground request finishes. While 

the preemption interval is active, the resource will not start servicing any idletime 

requests. It will service any queued foreground requests, however, and start a new 

preemption interval after each foreground request finishes. It will also immediately 

service newly arriving foreground requests. If no more foreground requests exist in the 

queue, the resource will remain idle until the preemption interval expires. 

Consequently, the resource will only start servicing idletime requests after the 

expiration of a full preemption interval in which no new foreground requests arrived. 

The proposed idletime scheduler reduces foreground delays compared to a simple 

priority queue. Instead of immediately starting service for queued background requests 

whenever the last foreground request finishes, the resource remains idle. When a new 



 
89

foreground request arrives at the resource, it can immediately receive service. With 

traditional priority queues, the new foreground request would have to wait for the 

resource to preempt or finish the active idletime request, decreasing performance. 

Introducing artificial delays before idletime service relaxes the property of work 

conservation. Traditional schedulers are work conserving, because they do not allow 

the resource to remain idle while work is queued. The idletime scheduler relaxes this 

property by allowing the resource to remain idle for a limited amount of time before 

starting background work. Note that work conservation for regular foreground tasks 

remains in effect. Section 4.2 discusses these and other properties in detail. 

The idletime scheduler purposefully delays idletime work to limit the impact of 

idletime use on regular foreground processing. It trades a reduction in idletime 

performance for the ability to limit the impact of idletime processing on regular 

foreground performance. The length of the preemption interval is a parameter that 

controls this tradeoff. With a longer preemption interval, the performance of idletime 

processing decreases, because each idletime request following foreground use incurs a 

long delay before it can start. Corresponding foreground performance will increase 

with a longer preemption interval, because the likelihood that the resource is busy 

serving idletime requests decreases. The length of the preemption interval thus allows 

tuning the idletime mechanism for particular resources and workloads.  



 
90

The mechanism of the proposed scheduler is similar to anticipatory disk scheduling 

[IYER2001]. That work defines “deceptive idleness” that can lead to a reduction in 

performance for a work-conserving disk scheduler when multiple processes issue 

bursty disk requests. Anticipatory scheduling overcomes this issue by injecting short 

periods of idleness to stimulate the formation of request queues that improve the 

effectiveness of the disksort algorithm (see Section 5.3). The proposed idletime 

scheduler described in this work is a more general solution supporting arbitrary 

resources that specifically focuses on supporting different service levels. It was the 

result of an independent research effort that recognizes and counteracts a similar 

effect. 

4.1 Formal Specification 

The previous section gave an informal introduction of the proposed scheduling 

mechanism. This section describes the mechanism formally and in detail. It defines a 

model for resources and their operations, and discusses the specific properties required 

for idletime scheduling. Later sections present a simple mathematical analysis of the 

idletime scheduler, and derive theoretical estimates to compare against the 

experimental measurements of a real implementation presented in later chapters. 

A formal definition requires a model of resource processing. For the purpose of this 

discussion, the following sections give a formal definition of a resource with its 



 
91

axioms and operations. The model supports both spatially and temporally shared 

resources. 

4.1.1 Definitions 

A resource , , , , , , , , ,t c pS R Q A c f P F B f= <  at time t∈` , where { }1, 2,3,...=` , is 

a tuple with these elements: 

Requests 

R  is the base set of all possible requests. tQ R⊆  is the subset 

enqueued waiting for service at time t . tA R⊆  is the subset that is 

being serviced by the resource at time t . (Without loss of generality, 

this discussion assumes that request identifiers are unique. Repeated 

identical requests receive unique identifiers, e.g., by including a nonce). 

Capacities 

c∈`  is the capacity of the resource expressed as a natural number. 

:cf R →`  is the required capacity of a specific request expressed as a 

natural number. Zero-capacity resources and requests are not useful. 

Priorities 

,P <  is a partially ordered set of priorities. F P⊆  and B P⊆  denote 

sets of foreground and background priorities, respectively. :pf R P→  



 
92

is the priority of a specific request. The priority of a request encodes its 

importance, pf  is an arbitrary function that assigns priorities to 

requests according to an arbitrary policy. 

Required Capacity 

( )c
r X

X f x
∈

= ∑  is the required capacity for a set X R⊆  of requests. 

4.1.2 Operations 

A resource tS  supports the following operations, that when started at time t∈`  

commence at time u∈` , where u t≥ . The duration u t−  indicates the service time of 

the operation. 

Enqueue 

( )enqueue r  adds a request r R∈  to the set of requests waiting for 

service such that { }u tQ Q r= ∪ . 

Service 

( )service t  dequeues a request tr Q∈  and moves it to the active set, 

such that { }u tQ Q r= −  and { }u tA A r= ∪ . Which specific tr Q∈  it 

serves depends on the queuing strategy of the resource. For idletime 

scheduling, the dequeue operation of the underlying priority queue will 



 
93

always return the highest-priority request tr Q∈ , such that 

: ( ) ( )t p pq Q f q f r∀ ∈ ≤ . 

Preempt 

( )preempt r  moves a request tr A∈  from the active set back to the 

queue such that { }u tQ Q r= ∪  and { }u tA A r= − . 

Finish 

( )finish r  removes an active request tr A∈  from the service set such 

that { }u tA A r= − . 

4.1.3 Axioms 

A resource tS  at time t∈`  must satisfy the following axioms: 

Request uniqueness 

No request can be both active and enqueued: t tQ A∩ =∅ . 

Priority uniqueness 

The sets of foreground and background priorities are disjoint: 

F B∩ =∅ .  

Priority order 

Foreground has priority over background: : :f F b B b f∀ ∈ ∀ ∈ < . 



 
94

Capacity limit 

The active required capacity must never exceed the resource capacity: 

: tt A c∀ ∈ ≤` .  

Satisfiability 

All requests must be satisfiable: : ( )cr R f r c∀ ∈ ≤ .  

Work conservation 

Whenever a resource has capacity available to service an enqueued 

request tr Q∈  at time t∈` , it must immediately service r : 

 ( ): ( ) ( )t c tr Q f r A c service t∃ ∈ + ≤ ⇒ . 

(This is strict work conservation. Section 4.2.3 will replace this axiom 

with weak work conservation, to enable idletime scheduling with 

preemption intervals). 

4.2 Idletime Properties 

The basic model in the previous section can describe processing for many kinds of 

resources. Idletime use requires additional restrictions on resource operations in order 

to minimize the impact background work has on regular foreground processing. 



 
95

Idletime use of available capacity depends on prioritization, preemptability, and 

isolation. This section will formally define these principles as properties of the 

resource model previously described. Informally, these principles are: 

1. Prioritization: never process idletime requests while regular 

requests are waiting for service. 

2. Preemptability: immediately preempt active idletime use to service 

incoming regular requests. Never preempt regular requests because 

of idletime use. 

3. Isolation: the side effects of idletime use must remain hidden from 

foreground processing. 

4.2.1 Prioritization 

Prioritization is a function of work queue management. It reduces the impact of 

idletime processing by guaranteeing that regular foreground requests tr Q∈  with 

( )pf r F∈  will always receive service before any lower-priority, idletime requests 

tr Q∈  with ( )pf r B∈ . 

R1

R2

I

Time

Request
Queue

Active

t1 t2 t3 t4

I
R2

R2

R1

I
R2

R1

R2

I

Time

Request
Queue

Active

t1 t2 t3 t4

I

R2

R1 II
R2

 

Figure 4.1. Temporally shared resource without (left) and with prioritization (right). 



 
96

Prioritization 

A resource tS  supports prioritization if and only if its ( )service t  

operation picks a new request tr Q∈  to serve such that 

{ }( ) max ( )p tp r f q q Q= ∈ . 

4.2.1.1 Temporally Shared Resource 

The left diagram in Figure 4.1 illustrates the operation of a FIFO scheduler for 

temporally shared resources that does not support prioritization. Before time t1, the 

resource is idle. At t1, regular request R1 arrives and the resource immediately starts 

processing it, thus ending the idle period. At t2, idletime request I and regular request 

R2 arrive and are enqueued. At t3, the processing of R1 finishes.  

The problematic scheduling decision occurs at t3, when the scheduler picks idletime 

request I for processing instead of regular request R2. Idletime processing for I delays 

regular processing (R2 must wait until t4 before receiving service), therefore violating 

the prioritization principle. 

Time

Request
Queue

Resource
Allocation

t1 t2 t3

R +75
I +50

I

R +75

I

Time

Request
Queue

Resource
Allocation

t1 t2 t3

I +50
R +75

R R

I +50

 

Figure 4.2. Spatially shared resource without (left) and with prioritization (right). 



 
97

A scheduler with support for prioritization would have picked R2 over I at t3 instead 

(see Figure 4.1, right diagram). 

4.2.1.2 Spatially Shared Resource 

Prioritization is also a critical characteristic for idletime use of spatially shared 

resources. Figure 4.2 displays such a scenario for a spatially shared resource with 100 

allocation units controlled by a scheduler without prioritization (left diagram). The 

resource is completely idle at t1. At t2, an idletime request I for 50 units and a regular 

request R for 75 units arrive at the resource. By allocating the capacity for the idletime 

request first, the scheduler causes the subsequent allocation of R at t3 to fail due to 

insufficient capacity. This delays processing of the foreground request R until the user 

of I returns the block. 

A spatial scheduler with support for prioritization (see Figure 4.2, right diagram) will 

schedule R before I. Even though the resource cannot service I at t3 (again due to 

insufficient resources) and idletime use is therefore not possible, this scheduling 

decision does not delay foreground use. 

4.2.2 Preemptability 

Preemptability is a function of resource processing. It further reduces the performance 

impact idletime scheduling has on foreground processing by preempting ongoing 

idletime work whenever a new foreground request enters the queue. 



 
98

Preemptability 

To support preemptability, a resource tS  must support prioritization 

and implement the following additional steps during its ( )enqueue r  

operation: whenever the idle capacity t tI c A= −  is ( )t cI f r<  and 

hence not sufficient to serve r , and there exists a subset 

: ( )t cP A P f r∃ ⊆ ≥  of lower-priority active requests such that 

: ( ) ( )p ps P f s f r∀ ∈ < , the resource then preempts these requests 

: ( )s P preempt s∀ ∈  before immediately starting the ( )service t  

operation, which will then dequeue and service r  due to prioritization. 

Note that the resource may compose P  as it sees fit. Different preemption strategies 

may result in different background service characteristics. For example, one strategy 

would choose the minimal P , such that it is the smallest subset of tA  whose 

preemption frees up enough capacity to serve r . This would maximize background 

throughput. Another strategy would pick the most recently started background requests 

in tA , and as a result minimize wasted work. 

Because the ( )preempt s  operation re-enqueues the set of preempted background 

requests, they may receive service later, when the resource has enough idle capacity to 

start serving them. 



 
99

4.2.2.1 Temporally Shared Resources 

The left diagram in Figure 4.3 shows an example of a scheduler for a temporally 

shared resource. At t1, it starts processing idletime request I. While it processes I, 

regular foreground request R arrives at t2. However, the resource continues to process 

I, delaying execution of R until t3, when I finishes.  

The scheduler in this scenario violates the preemptability principle, because it does not 

immediately yield the resource to the newly arriving regular request R at t2. The right 

diagram in Figure 4.3 shows how a scheduler with support for preemptability operates 

in the same scenario. At t2, it preempts (or aborts) the active request I – incurring 

preemption cost X – and starts processing R instead at t3. Thus, R receives service 

earlier than in the scenario without preemption, decreasing foreground delays. (For an 

ideal resource with zero-cost preemption, R would start immediately at t2, due to the 

absence of X). 

4.2.2.2 Spatially Shared Resources 

The next example illustrates how a scheduler for a spatially shared resource supports 

preemptability, again for a resource with 100 allocation units. At time t1 in the left 

IR

I

Time

Request
Queue

Active

t1 t2 t3

R

I R

Time

Request
Queue

Active

t1 t2 t3

R

I R
R

I

I

t4

 XI

 

Figure 4.3. Temporally shared resource without (left) and with preemptability (right). 



 
100

diagram of Figure 4.4, the resource is completely idle. At t2, idletime request I for 50 

units arrives, and the scheduler allocates the corresponding capacity. When a regular 

request R for 75 units arrives at t3, it is declined due to lack of available capacity. This 

violates preemptability. 

Instead of declining request R, a scheduler with preemptability support must reclaim 

(part of) the capacity allocated to idletime use (i.e., request I) whenever it has 

insufficient capacity for an incoming regular request. In the right diagram in Figure 

4.4, the scheduler transparently reclaims 25 of the units allocated to idletime request I, 

so it can satisfy the regular request R. 

4.2.3 Relaxed Work Conservation 

The beginning of this chapter presented an informal description of the proposed 

idletime scheduler. The key idea is to relax the work conservation principle for 

idletime use. This allows a resource to remain idle for a limited time (preemption 

interval), even when idletime requests are waiting in the queue. Relaxing the work 

conservation principle can reduce foreground delays, because newly arriving 

Time

Request
Queue

Resource
Allocation

t1 t2 t3

I +50

I

R +75

I

Time

Resource
Allocation

t1 t2 t3

R +75

R

I +50

I I

Request
Queue

 

Figure 4.4. Spatially shared resource without (left) and with preemptability (right). 



 
101

foreground requests receive immediate service during the duration of the preemption 

interval, without incurring preemption overheads. This section will define this 

property formally, and describe its operation in detail. 

For reference, Section 4.1.3 defined work conservation – in the following discussion 

referred to as strict work conservation, to stress the difference – as follows: 

Strict work conservation 

A resource tS  at time t∈`  is work conserving, if and only if it 

services an enqueued request tr Q∈  whenever it has sufficient capacity 

available: ( ): ( ) ( )t c tr Q f r A c service t∀ ∈ + ≤ ⇒ . 

The idea behind relaxed work conservation is to allow the resource to remain idle 

before servicing a queued request, even if capacity is available. The introduction of an 

arbitrary but limited idle duration prevents indefinite starvation under finite high-

priority workloads: 

Relaxed work conservation 

A resource tS  at time t∈`  supports relaxed work conservation, if and 

only if it services, whenever it has sufficient capacity available, an 

enqueued request tr Q∈  at some finite time :df R → `  in the future: 



 
102

( ): ( ) ( ( ))t c t dr Q f r A c service t f r∀ ∈ + ≤ ⇒ + . (Note that if ( ) 0df r = , 

behavior degenerates into strict work conservation). 

The key property of the proposed idletime mechanism is strict work conservation for 

foreground processing ( )( ) 0df r = , while requiring relaxed work conservation 

( )( ) 0df r ≥  for background processing: 

Idletime processing with preemption intervals 

A resource tS  at time t∈`  supports idletime use with preemption 

intervals, if and only if: 

1. It is strictly work conserving for all enqueued foreground requests 

tr Q∈  where ( )pf r F∈ . 

2. It requires relaxed work conservation for all enqueued idletime 

requests tr Q∈  where ( )pf r B∈ , using a function :df F′ → `  that 

specifies the duration of the associated preemption interval for each 

foreground request. 

t4 t5 t6

Time

Request Queue

Active Request

t1 t2 t3

R1

I
R1

I R2

R2

I
R2

I

I

 XI

 

Figure 4.5. Scheduler with prioritization and preemptability, incurring preemption overhead. 



 
103

The function :df F′ → `  that specifies the length of the preemption interval 

following each foreground is deliberately simple to avoid complicating the model. 

Future extensions to this model could base the length of the preemption interval on 

other pieces of information.  

Also, note that this definition of relaxed work conservation allows for idle periods 

between idletime requests. Section 5.1 discusses the possible variants of the idletime 

mechanism that can be derived as by-products of this definition. 

Figure 4.5 gives another example of a scheduler that supports prioritization and 

preemptability, and the following sections will compare it to the idletime scheduler 

with relaxed work conservation. Note that even though the scenarios in the remainder 

of this section use a temporally shared resource, the mechanism works similarly for 

spatially shared resources.  

In Figure 4.5, a background request I arrives at the idle resource at t1, followed by 

foreground request R1. The resource schedules R1 first due to prioritization. At t2, 

processing of R1 finishes and processing of I starts. For the purpose of this and all 

following examples, context-switch costs associated with shifting the resource to the 

next request when the active one finishes are included in the respective processing 

times.  



 
104

At t3 – while the resource is still processing I – a new foreground request R2 arrives. 

The resource preempts I (placing it back into the queue), and then starts processing R2 

at t4. The preemption cost X in this example is 4 3t t− . Finally, after R2 finishes at t5, the 

resource processes I, and becomes idle again at t6. Note that preemption costs differ 

from context-switch costs previously described. Preemption costs occur while a 

request is underway, not when it has finished, and will always be shown separately. 

Figure 4.6 shows the same scenario as Figure 4.5, but for a scheduler with a 

preemption interval. As before, a background request I and a foreground request R1 

arrive at the resource at time t1, and the resource schedules R1 first (prioritization). 

However, when R1 finishes at t2, the resource does not immediately schedule the 

queued idletime request I. Instead, it remains idle while waiting for the preemption 

interval started after R1 to expire. Before the preemption interval expires, a new 

foreground request R2 arrives at t3 and immediately receives service. It does not incur 

a preemption delay, because the resource is idle at time t3. When R2 finishes at t4, a 

new preemption interval starts. No new foreground requests arrive during that 

t4 t5 t6

Time

Request Queue

Active Request

t1 t2 t3

R1

I
R1

I
R2

I

II

Preemption
Interval

Preemption
Interval

R2

 

Figure 4.6. Idletime scheduler with prioritization and preemption interval. 



 
105

preemption interval, and I finally receives service at t5, when the preemption interval 

expires. 

Note that a preemption interval will not prevent all preemptions. Instead, the duration 

of the preemption interval limits the impact idletime use has on foreground processing. 

With a short preemption interval, the system exploits idle capacities sooner, potentially 

increasing the amount of scheduled background work, but also increasing the 

preemption likelihood and in turn, the impact on foreground processing. Conversely, a 

longer preemption interval exploits less idle capacity for background use, but also 

reduces aggregate preemption costs. The evaluation in Chapter 6 explores the effect of 

different preemption interval lengths on foreground performance in several 

experimental setups.  

The previous example (Figure 4.6) showed a scenario where the length of the 

preemption interval was sufficient to eliminate the preemption overhead. Figure 4.7 

shows an example of a different scenario where preemption still occurs, even though 

the scheduler uses a preemption interval. This is because the length of the preemption 

t7 t8t4 t5 t6

Time

Request Queue

Active Request

t1 t2 t3

R1

I
R1

R2

II

Preemption
Interval

R2 I
R2

Preemption
Interval

I

II

 XI

 

Figure 4.7. Idletime scheduler with prioritization and short preemption interval, incurring preemption overhead. 



 
106

interval in this example is too short for the given workload. As before, a background 

request I and a foreground request R1 arrive at t1. R1 receives service, finishes at t2, and 

a preemption interval follows that ends at t3. Now I receives service, but while it is 

active, the second foreground request R2 arrives at t4. The resource must now preempt 

I, move it back to the queue, and then start R2 at t5. This incurs a preemption delay 

5 4X t t= − . Only after R2 finishes at t6 and the associated preemption interval ends at t7 

does I receive service and finish successfully. 

4.2.4 Isolation 

The isolation principle states that all side effects of an idletime task must remain 

hidden during its execution. When it finishes successfully, the system may merge the 

changed idletime state into the regular foreground state in an atomic operation. 

Prioritization and preemptability are sufficient to establish an idletime service class. 

However, without isolation, the state created as a side effect of idletime resource use 

can interfere with regular processing. One example of such interference could happen 

when idletime execution leaves a system data structure in an inconsistent state, 

OS StateProcess

Process

Spec.
Task

Virtual
OS StateProcess

Spec.
Task

Virtual
OS State

OS StateProcess

Process

Process

 

Figure 4.8. Shared operating system state (left) and virtualized operating system state (right). 



 
107

because foreground use preempted it during modification of the structure. 

The isolation property virtualizes the system state: instead of sharing state between all 

regular and idletime tasks, each idletime task executes with its own shadow copy of 

the state. Regular processes still access and share the master copy of the state, as 

before. Figure 4.8 shows the current sharing situation on the left side, and the 

virtualized operating system state on the right. Virtualized operating system state is 

similar to the concept of virtual memory, where each process executes in a separate 

address space. 

Isolation is not a property of a single resource. Thus, the formal model previously 

defined for resource operation is insufficient to capture the desired properties. The 

remainder of this section will present a simple, general model of processing inside an 

operating system that can describe the isolation property formally. 

State 

Let *S  denote the set of all possible operating system states, where 

each *S S∈  incorporates all variables and structures visible to 

processes. 

Process 

A process is a pair 0 ,P S F=  where *
0S S∈  is the initial operating 

system state at its start, and ( )1, , nF f f= …  is a sequence of operations 



 
108

where each operation xf F∈  is a transformation * *:xf S S→  on the 

set of operating system states *S . Let 1
ˆ ...k kf f f= D D  denote the 

successive composition of the subsequence ( )1,..., kf f , where 

1 k n≤ ≤ . 

Intermediary states 

For a process 0 ,P S F= , let 0
ˆ ( )k kS f S=  be the intermediary state 

after k  operations, where 1 k F≤ ≤ . The intermediary states reached 

during process execution of P  form the sequence ( )0
ˆ , , FS S S= … . 

Idletime process 

An idletime process 0 ,P S F=  executes in an extended operating 

system state * *S S⊇  with an extended start state *
0S S∈  and 

( )1, , nF f f= …  where * *:xf S S→ . The extended state * *S S−  is 

invisible to regular processes (see the “isolation” definition). 

Concurrent execution sequence 

Given a regular foreground process 0 ,P S F=  and an idletime 

process 0 ,P S F= , a concurrent execution sequence of operations is 

any sequence F F F= ∪�  that retains the relative pair-wise order of the 



 
109

sequences F  and F , such that for all pairs ,x yf f F F∈ × , there 

exists a corresponding pair of operations ,a bf f F F∈ ×� �  such that 

( ) ( ) ( )x a y bf f f f x y a b= ∧ = ∧ < ⇒ < , and likewise for all pairs of F . 

This naturally extends to multiple foreground and idletime processes 

through iteration on the concurrent sequence. 

Isolation 

Given a regular foreground process 0 ,P S F= , an idletime process 

0 ,P S F=  and a concurrent execution sequence F F F= ∪� , the side 

effects of idletime processing are isolated if and only if for each xf F∈  

there exists a yf F∈� �  such that x yf f= �  and *
1 1x yS S S− −= ∩ . In other 

words, before each foreground execution step in the concurrent 

sequence, those parts of the intermediate state that are not part of the 

extended idletime state must be identical to the intermediate state in a 

scenario without idletime processing. 

Note that this model supports pre-executing a regular foreground operation 

speculatively using idletime. The speculative operation xf F∈  is a duplicate of a 

regular one ( :y y xf F f f∃ ∈ = ) and x y<  in the concurrent sequence F F F= ∪� . In 

this case, yf  is speculatively executed earlier in the sequence (as xf ), but the effects 



 
110

of the execution are kept in the extended state. During execution of yf , they are 

moved from the extended into the regular part of the state space. Section 8.3 discusses 

isolation techniques in more detail. 

A starting idletime process has no associated virtual state until it performs write 

operations on operating system state. Whenever an idletime process is about to 

perform a write operation on a data item, the system atomically copies that data item 

(or a larger piece of state containing the item, such as a page), and then executes the 

write on the copied item. These shadow copies are invisible to regular foreground 

processing. Read operations access virtual state if it exists for a given data item, and 

regular operating system state otherwise. The system updates the shadow copies 

together with the master copy on regular use. Update conflicts with other shadow 

copies cause idletime tasks that depend on them to abort (or enter recovery, if 

supported). 

The state of successfully finishing idletime tasks moves from the shadow copies into 

the master copy through an atomic operation. This commit operation also updates 

shadow copies belonging to other idletime tasks. It is a variant of traditional copy-on-

VS1 S1

S2

VS2

OS
State

P1

P2

(1) (2)

(3)
P1

P2

(1)
OS

State

VS1 S1

S2

VS2

(2)

(3)
 

Figure 4.9. Foreground update and state propagation (left); idletime state commit at finish and propagation 
(right). 



 
111

write schemes [POPEK1981][FITZGERALD1986][RASHID1988] because of the state 

merge operation required for finishing idletime tasks. Because data items can change 

in both virtual and regular state – when concurrent regular processing writes to the 

same data item – the system must detect these write conflicts, and abort (or restart) the 

idletime use. 

Figure 4.9 gives an example of operations on virtual states. The diagram on the left 

shows how a foreground state change (1) by regular process P1 results in immediate 

updates to the virtual states VS1 and VS2 belonging to idletime tasks S1 and S2, in steps 

(2) and (3), respectively. 

The right diagram of Figure 4.9 shows how an idletime modification of its virtual state 

VS1 by S1 in step (1) is atomically committed back to the master state when it finishes 

(2). It consequently becomes visible to regular processes P1 and P2. Furthermore, the 

commit operation triggers an immediate update (3) to idletime state VS2, as if a regular 

process had modified the master state. Note that if the VS1 had conflicted with the 

master state – maybe because a foreground process had modified the same structures – 

the commit would fail. 

4.3 Discussion 

This section will discuss the implications of the mechanism described in the previous 

sections. The first part of this section discusses the effects of different preemption 



 
112

interval lengths, and gives a simple heuristic to identify useful interval lengths. The 

second part of this section describes how an idletime mechanism using preemption 

intervals can support resource hierarchies where some of the schedulers do not support 

idletime use. 

4.3.1 Preemption Interval Length 

The length of the preemption interval allows tuning the idletime mechanism for 

particular resources and workloads. The impact of idletime processing on foreground 

performance will decrease with a longer preemption interval, because the likelihood 

that the resource is busy serving idletime requests decreases correspondingly. 

The description of the idletime mechanism in this chapter has not yet addressed what 

the length of a preemption interval should be. A method for determining an 

appropriate length for the preemption interval, given particular workload properties 

(burstiness, inter-arrival rate, priority distribution, etc.) and resource characteristics 

(service time, preemption time, etc.), requires a queuing-theoretical analysis of the 

scheduler, which would depend on the traffic model more than the idletime 

mechanism. 

This section will identify some simple heuristics for setting the length of preemption 

intervals for a resource. More refined schemes for setting – and possibly dynamically 

adapting – preemption interval lengths are an area for future research.  



 
113

In the extreme case of an indefinite preemption interval, no idletime work ever 

receives service, and foreground performance will be identical to a system without 

idletime scheduling. In the other extreme – a zero-length preemption interval – 

foreground performance will be identical to a system that uses traditional priority 

queues. 

The idletime scheduler minimizes foreground delays by limiting the number of 

required idletime preemptions to at most one per foreground burst. This amortizes 

idletime preemption cost over a burst of foreground requests. The defining 

characteristic of these bursts are inter-request gaps that are shorter than the preemption 

interval. 

Figure 4.10 illustrates this behavior. Here, the preemption of I at t2 delays the start of 

R1 until t3. After R1 finishes, the resource enters the preemption interval P(R1). 

Because the P(R1) is longer than the inter-arrival time between R1 and R2, I remains 

blocked, and the resource remains idle and ready to serve R2 immediately at t4. If I had 

been allowed to receive service, another preemption delay would have delayed R2.The 

I

t7t4 t6

Time

Request
Queue

Active
Request

t1 t2 t3

R1

I
R1

I

P(R1)

R2

I
R2

I

R3

R3

I

R4

R4

P(R2) P(R3)
P(R4)Preemption

Interval

I

X

t5

 X I

 

Figure 4.10. Bounded preemption cost through preemption intervals. 



 
114

following foreground requests R3 and R4 are also part of the burst – their respective 

inter-arrival gaps are less than their respective preemption intervals – and 

consequently receive service without additional preemption delays. Only after R4’s 

preemption interval P(R4) expires at t7 does the resource allow idletime use, and starts 

servicing I. 

Figure 4.11 shows an example where a long preemption interval prevents idletime 

service. At t1, idletime request I is preempted, and the regular request R1 receives 

service at t2. When it finishes at t3, its preemption interval P(R1) starts. Shortly before 

it expires, R2 starts at t4, and starts a new preemption interval P(R2) after it finishes, 

which further prevents I from receiving service. The same is true for R3 and R4, and 

their corresponding preemption intervals P(R3) and P(R4). Only after P(R4) expires at 

t7 does I receive service. 

A more realistic upper bound for the preemption interval length is the average 

foreground inter-arrival time. A preemption interval longer than the inter-arrival gaps 

will lead to a situation where idletime use remains disabled. To prevent this scenario, 

I

t7t4 t6

Time

Request
Queue

Active
Request

t1 t2 t3

R1

I
R1

I

P(R1)

R2

I
R2

I

R3

R3

I

R4

R4

P(R2) P(R3)
P(R4)Preemption

Interval

I

t5

 X I

 

Figure 4.11. Long starvation of idletime processing caused by long preemption intervals. 



 
115

and allow idletime requests to receive service, useful preemption interval lengths 

should be shorter than the foreground inter-arrival gaps.  

However, preemption interval lengths cannot become arbitrarily short. The worst-case 

scenario for idletime scheduling is one-request foreground bursts with gaps longer 

than the preemption interval. In such a case, the mechanism is ineffective, and each 

foreground request will still incur the full preemption overhead. When a resource does 

not support preemption, foreground requests must wait on average half the service 

time for idletime work to finish before receiving service, causing up to 50% reduction 

in performance. 

Figure 4.12 gives an example of a worst-case scenario. Here, the preemption intervals 

are shorter than the inter-arrival gaps, and I receives service after each of the 

preemption intervals P(R1) to P(R4) expire. Each time, the next new foreground 

request arriving while I is active incurs the preemption delay. Consequently, I does not 

successfully finish until t17. This situation can only occur in two cases: very light 

foreground loads, or very short preemption intervals. Under very light foreground 

t4

Time

Request
Queue

Active
Request

t1 t2 t3

R1

I
R1

I

P(R1)

I

Preemption
Interval

I

R2

I
R2

I

P(R2)

R3

I
R3

P(R3)

I

R4

I
R4

I

P(R4)

t8t5 t6 t7 t12t9 t10 t11 t16t13t14 t15 t17

 X I  X I  X I  X I

 

Figure 4.12. Idletime worst-case scenario. 



 
116

loads, this behavior may be acceptable. When it is not, lengthening the preemption 

interval causes multiple spaced-out requests to form longer bursts, and thus increases 

amortization of preemption costs. However, a longer preemption interval also prevents 

utilizing the idle gaps for background use. In both cases, lengthening the preemption 

interval avoids this worst-case behavior. 

Because the primary requirement for an effective idletime scheduler is the 

minimization of foreground interference (see Section 2.1), useful minimal preemption 

interval lengths would cause the formation of foreground bursts. This allows 

amortization of preemption costs. Longer preemption intervals will often result in 

longer bursts, and consequently reduce preemption overheads. The ideal preemption 

interval for a given workload is just long enough to cause the formation of foreground 

bursts that limit the preemption costs to within limits of a user-specified policy. 

A strictly secondary objective is maximizing idletime work. This requires a 

preemption interval less than the average foreground inter-arrival time, which allows 

idletime requests a chance for service. These two rules can conflict. This occurs under 

high foreground loads, when the inverse of the inter-arrival rate approaches the service 

time. In such borderline cases, the first rule has priority and causes idletime starvation, 

protecting foreground performance. 



 
117

4.3.2 Queue Hierarchies 

Many approaches for service differentiation require extensive changes to both 

operating systems and applications, such as specification and enforcement of resource 

reservations. One benefit of the proposed idletime scheduler is that it can establish 

service differentiation through localized modifications. 

Section 2.3.2 described how implicit scheduling decisions between the resources in a 

processing hierarchy could cause priority inversion and disable priority scheduling 

[LAMPSON1980]. One example is an operating system that processes queue events at 

lower hierarchy levels with higher priority. This effectively disables idletime use 

unless queues at all levels – and the implicit scheduling decisions between them – 

support priorities. 

Another such example is a slower, non-prioritized producer queue feeding a faster, 

prioritized consumer queue. The left diagram of Figure 4.13 explains this effect in 

detail by showing the flow of a request stream through two chained queues over time.  

Foreground (F) and background (B) requests arrive at a priority queue coming from a 

non-prioritized FIFO queue. Step (1) shows the start scenario. In step (2), the first 

foreground request flows to the priority queue, and enters its higher-priority queue at 

the top at step (3). Concurrently, the next (background) request B starts flowing to the 

priority queue. Because the priority queue is empty, it immediately passes the 

foreground request on to a downstream consumer in step (4). At the same time, the 



 
118

idletime request B enters the lower-priority queue at the bottom, and the second 

foreground request F flows towards the priority queue. 

In step (5), the priority queue is ready to schedule the next request. Because no 

foreground request is queued, it starts servicing idletime request B. When the second 

foreground request F arrives at the priority queue at time (6), it must either wait for B 

to finish (depicted in the diagram) or to be preempted. In either case, the second 

foreground request incurs a delay due to the presence of idletime processing, even 

though some queues support priorities. 

The right diagram of Figure 4.13 shows the same scenario using an idletime queue as 

previously described in place of the simple priority queue. Steps (1) to (3) are identical 

F

B

FIFO Priority Queue

BF

B

B

FF

FF

FF

B

F

F

F

B

FIFO Idletime Queue

BF

B

B

FF

FF

FF

F

B

F

B

B

(1)

(2)

(3)

(4)

(5)

(6)

(7)

 

Figure 4.13. Operation of priority (left) and idletime schedulers (right) in a hierarchy. 



 
119

to the previous scenario. In step (4), the idletime scheduler also starts servicing F. 

However, once F finishes, the scheduler enters a preemption interval, and will not start 

servicing idletime request B. In step (5), the second foreground request F arrives at the 

idletime scheduler while the preemption interval is still active. F can receive 

immediate service, and flows towards its consumer in step (6). Eventually, the 

preemption interval expires, and B receives services in step (7). 

The example in Figure 4.13 illustrates how an idletime scheduler with a preemption 

interval decreases delays for foreground processing even in scenarios where some 

schedulers remain unmodified and do not support prioritization. It also demonstrates 

that this improvement comes at the expense of background performance; the idletime 

scheduler significantly delays the background request I until all foreground requests 

are finished, and the preemption interval has expired. 

Note that the example assumed that the preemption interval was longer than the time 

difference between steps (4) and (5). A shorter preemption interval would expire 

before step (5), and the idletime queue would behave exactly like the simple priority 

queue on the left. Again, this illustrates how the length of the preemption interval 

controls the behavior of the mechanism. 



 
120

4.4 Quantitative Analysis 

This section will present a simple mathematical model that predicts the quantitative 

behavior of a resource managed by a scheduler supporting the idletime properties 

described in the previous sections.  

The analysis presented here focuses on temporally shared resources, and quantifies the 

obtainable throughput. Figure 4.14 shows the configuration this section will analyze. 

Two processes run concurrently, one issuing foreground requests, the other issuing 

background requests for the same resource managed by an idletime scheduler. The 

objective is to quantify the concurrent foreground and background performances 

achieved by the two processes. 

Each process generates resource request at a certain rate, called the “intensity” of the 

process. It specifies the fraction of processing time a process uses to generate resource 

requests; for example, at 50% intensity a process spends half its cycles generating load 

and half its cycles doing other things (possibly sleeping). 

Resource

Foreground
Process

Background
Process

Idletime
Scheduler

Variable Intensity: 1-100% Fixed Intensity: 100%
Preemption Interval

Measure Foreground Performance Measure Background Performance

 

Figure 4.14. Analysis configuration. 



 
121

The background process is greedy, and tries to consume as much resource capacity as 

possible: its intensity is therefore always 100%. This models the worst-case scenario 

for an idletime scheduler, because each foreground request could potentially incur a 

preemption delay.  

The intensity of the foreground process is the first variable of the analysis and varies 

between 1-100%. This allows studying the impact of background processing as the 

foreground workload increases. The second variable of the analysis is the length of the 

preemption interval. This analysis focuses on throughput as a metric, and does not 

predict request latencies. 

Goal 

Let [ ]0...1I = ⊂ \  be the set of valid intensities, and P ⊆ \  be the 

valid lengths of the preemption interval. Find two functions 

, :f b I P× → \  that describe the achievable foreground and 

background performances at given intensities i I∈  and preemption 

interval lengths p P∈ , respectively. 

Several other constants are required for this analysis. One is the obtainable throughput 

at a given intensity :r I → \  when no idletime processing occurs. As a shorthand, let 

(1)maxr r= . Another is maxt ∈\ , which specifies the maximal foreground request inter-

arrival time in milliseconds. The former is resource-dependent; the latter is a system 

wide, resource-independent constant. 



 
122

One of the key functions of the model is acting as an indicator for the correct 

operation of the idletime prototype implementation (see Chapter 5). Thus, the values 

for the constants :r I → \  (baseline performance without idletime presence) and 

maxt ∈\  (foreground inter-arrival time) were carefully chosen according to the 

measured or fixed characteristics of the benchmark system. This generates useful 

predictions that Chapter 6 will compare against experimental measurements of the 

prototype implementation, to determine whether the model is accurate. 

Both the disk drive and network interface measured in Chapter 6 do not support 

preemption. Consequently, an active idletime request will delay a newly arriving 

foreground request until it finishes. For that reason, the quantitative model presented 

in the remainder of this section also assumes that the analyzed resource does not 

support preemption.  

Another difference between the model derived in the remainder of this section and the 

previous definitions is due to implementation restrictions (see Chapter 5). The 

t7t4 t5 t6

Time
t1 t2 t3

R1

I
R1

R2

I

Preemption
Interval

R2 I
R2

Preemption
Interval

I

I

t4 t5

Time

Request
Queue

Active
Request

t1 t2 t3

I
R1

I
R2

I

II

Preemption
Interval

Preemption
Interval

R2R1  XI

Figure 4.15. Effects of preemption interval length when preemption intervals start at the beginning of foreground 
requests. 



 
123

prototype implementation begins each preemption interval at the start of the 

corresponding foreground request, and not when it finishes service. Figure 4.15 

illustrates this difference. To allow for easier comparison of the prediction to the 

measured results, the quantitative model presented in the following sections also 

follows that behavior.  

Note that this change does not affect any of the idletime properties previously 

discussed. The only difference is that for resources with fixed service times, a 

preemption interval less than the service time will not be effective. Such short 

preemption intervals will expire while their corresponding foreground requests are still 

active, as shown in the right diagram in Figure 4.15. In these cases, the idletime 

mechanism degenerates into a simple priority queue. For resources with varying 

service times for similar requests, the idletime scheduler will increase in effectiveness 

over a range of preemption interval lengths that corresponds to the distribution of 

service times. 

Background Performance 

The term ( ) ( )maxa i r r i= −  describes the maximum capacity the 

resource has available for background use when the foreground 

intensity is i , irrespective of the preemption interval p . The term 

( ) (1 ) maxs i i t= −  describes the mean foreground inter-arrival time at 

intensity i . The preemption cost at intensity i  is the inverse of the 



 
124

service rate ( )r i , based on the assumption that the resource does not 

support preemption. Consequently, with preemption intervals longer 

than the service time but less than maxt , the total time the resource is 

available for background use is: 

 1 1( ) iff 
( ) ( ) maxs i p p t

r i r i
⎛ ⎞

− + ≤ ≤⎜ ⎟
⎝ ⎠

 

The fraction of achievable performance with preemption intervals in 

that region is: 

 
1( ) 1iff ( )

( )( )
max

s i p
p tr i

r is i

⎛ ⎞− +⎜ ⎟ ≤ ≤⎜ ⎟⎜ ⎟
⎝ ⎠

 

The actual background throughput is consequently: 

 ( )
1(1 ) 1( , ) ( ) iff ( )

( )(1 )

max
max max

max

i t p
b i p r r i p tr i

r ii t

⎛ ⎞− − +⎜ ⎟= − ≤ ≤⎜ ⎟⎜ ⎟−⎝ ⎠

 

With a preemption interval maxp t> , background requests become 

stalled, and background throughput becomes zero. The fraction of 

achievable throughput is therefore: 



 
125

 ( , ) 0 iff maxb i p p t= >   

If the preemption interval p  is less than the service time, the idletime 

scheduler degenerates into a simple priority queue. Assuming that the 

resource does not support preemption, each foreground request is on 

average delayed by half a service time, and background throughput is 

approximately 

 ( ) 1( , ) iff 
2 ( )max

r ib i p r p
r i

⎛ ⎞= − <⎜ ⎟
⎝ ⎠

 

With all subterms replaced, the result is: 

 ( )

( ) 1iff 
2 ( )

1(1 )( , ) 1( ) iff ( )
( )(1 )

0 iff 

max

max
max max

max

max

r ir p
r i

i t pb i p
r r i p tr i

r ii t
p t

⎧ − <⎪
⎪
⎪ ⎛ ⎞− − += ⎨ ⎜ ⎟− ≤ ≤⎪ ⎜ ⎟⎜ ⎟−⎪ ⎝ ⎠
⎪

>⎩

 

The right image in Figure 4.17 shows a graphic illustration of these 

three regions. 

Foreground Performance 

The term ( , )maxr b i p−  denotes the resource capacity not utilized by 

background work at a given intensity and preemption interval. ( )r i  is 



 
126

the performance the foreground process achieves with no idletime use 

present. Foreground performance will be the minimum of the desired 

performance and the fraction idletime processing did not utilize: 

( )min ( , ), ( )maxr b i p r i− .  

Furthermore, the presence of idletime use causes context switches, 

which may change the internal state of the resource and can therefore 

affect foreground performance. The factor 0 1α≤ ≤  captures this 

effect, and is a resource-dependent constant. With all subterms 

replaced, the result is: 

 ( )
iff ( , ) 0

( , ) min ( , ), ( )
1 otherwisemax

b i p
f i p r b i p r i

α >⎧
= − ⋅⎨

⎩
 

The left image in Figure 4.17 shows a graphic illustration of these three 

regions. 

4.4.1 Performance Expectations 

The following sections use the simple quantitative model previously described to 

analyze the expected performance for two temporally shared resources with different 

characteristics: a disk drive and a network interface. 



 
127

As discussed previously, the definitions for the two constants :r I → \  and maxt ∈\  

are based on measured characteristics of the benchmark system the prototype 

implementation will be evaluated on (see Chapter 6). The maximum foreground inter-

arrival time maxt ∈\  is identical in both scenarios in the remainder of this section: 

100msmaxt = . 

The two estimation functions , :f b I P× → \  return absolute throughput numbers. 

For easier comparison, the graphs in the remainder of this section normalize them as 

[ ], : 0...1n nf b I P× → ⊆ \ . The foreground performance is normalized by :r I → \ , 

whereas the background performance is normalized by the absolute maximum: 

( , )( , )
( )n

f i pf i p
r i

=  and 
( )

( , )( , )
max ( )n

i I

b i pb i p
r i

∈

=  

The predictors for foreground and background performance are functions of two 

variables (intensity and preemption interval), and plotting them produces a 3D surface. 

Comparing the shapes of these surfaces directly is difficult, because they do not 

reproduce well on paper. For this reason, the analysis will use 2D contour plots of the 

respective function.  



 
128

Figure 4.16 shows how the surface plot of an example surface function (left graph) 

translates into a more readable contour plot (right graph). The shades of the contour 

plot indicate local performance; lighter shades of gray indicate better performance, 

darker shades worse performance. For each scenario, two contour plots will show 

foreground and background performance. 

Figure 4.17 shows the foreground and background performance plots for an idealized 

idletime scheduler, and identifies the regions of interest. There are three major regions 

based on preemption interval lengths: the area where the preemption interval is less 

than the service time, the area where the preemption interval is longer than the 

foreground request inter-arrival time, and the area in between. 

With a preemption interval lower than the resource service time, the scheduler is 

expected to be ineffective, because each interval will expire while its corresponding 

0 25 50 75 100
Foreground Intensity [%] 

0

50

100

150

Preemption
Interval
 [ms] 

0
50

100
Normalized
Throughput [%] 

1

1

0 20 40 60 80 100
Foreground Intensity [%] 

0

20

40

60

80

100

120

140

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

 

0% 100%Normalized Throughput

 

Figure 4.16. Surface plot of an example predictor function (left) and its corresponding contour plot (right). 



 
129

foreground request is still active. Performance in this case will be identical to a system 

that uses traditional priority queue. Foreground performance in that case (left graph of 

Figure 4.17, bottom region) should be approximately 50%, because on average, each 

foreground request will incur a preemption of ongoing background work. Background 

performance in this case (right graph of Figure 4.17, bottom region) is close to 100% 

at low foreground intensities, and decreases to less than 50% at maximum foreground 

intensity. 

In the middle regions of Figure 4.17, where the preemption interval length lies 

between the service time and the foreground inter-arrival time, the idletime scheduler 

becomes effective and maintains high foreground performance (light shades of gray). 

Background performance decreases with increasing foreground intensity due to more 

frequent preemption intervals, which decrease the amount of idletime capacity usable 

for background work. It also decreases with increasing preemption lengths, because 

0 20 40 60 80 100
Foreground Intensity [%] 

0

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

Foreground (FG) Performance

0 20 40 60 80 100
Foreground Intensity [%] 

0

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

Background (BG) Performance

Idletime scheduling effective: 
High FG performance when  

preemption interval > service time.

Service 
Time

Idletime scheduling inffective: 
Low FG performance.

Scheduler 
effective: 
BG performance 
decreases with
increasing FG intensity 
and preemption interval.

Idletime scheduling inffective: 
Limited BG performance decrease.

Complete BG 
starvation.

0% 100% 0% 100%

Idletime scheduling effective: 
Full FG performance.

Idletime scheduling effective: 
Complete BG starvation.

FG 
Inter-Arrival 

Time

 

Figure 4.17. Overview of the expected performance behavior for an idletime scheduler. 



 
130

longer preemption intervals at fixed arrival intensity also decrease the amount of 

idletime capacity available for background use.  

Finally, in the third region in Figure 4.17, the preemption intervals are longer than the 

foreground inter-arrival rate. Here, idletime use completely stalls, because even at 

lowest foreground intensities, the inter-arrival time is always shorter than the 

preemption time, and preemption intervals never expire. Consequently, foreground 

requests achieve full performance. 

4.4.2 Disk Drive 

In the first scenario, the two load-generating processes issue read requests on the same 

file system. Each request reads a single disk block (512 bytes) at a random location on 

the drive. The baseline performance curve :r I → \  is based on measurements of a 

Western Digital Caviar AC28200 disk drive, shown in Figure 4.18. This drive has a 

measured mean service time of approximately 19ms, which conforms to the 

manufacturer’s specifications of 15ms maximum mean seek time plus 5ms mean 

latency. The performance estimates presented in this section correspond to the 

experimental setup evaluated in Section 6.1.1 and will be compared against them in 

 0

 10

 20

 30

 40

 50

 60

 0  20  40  60  80  100

Th
ro

ug
hp

ut
 [b

lo
ck

s/
s]

Foreground Intensity [%]
 

Intensity 
[%] 

Throughput 
[blocks/s] 

 Intensity 
[%] 

Throughput 
[blocks/s] 

1 8.30  55 30.86 
5 8.58  60 33.42 
10 9.34  65 35.66 
15 11.30  70 38.18 
20 13.92  75 40.84 
25 16.18  80 43.08 
30 18.86  85 45.44 
35 21.08  90 48.22 
40 23.64  95 50.00 
45 26.04  100 52.40 
50 28.22     

Figure 4.18. Baseline read performance of a disk drive without idletime presence. 



 
131

Section 7.1.1.2. 

Figure 4.19 shows the contour plots of the predicted foreground (left) and background 

(right) performance. They exhibit the same major patterns shown in the overview in 

Figure 4.17. 

Looking at Figure 4.19 in detail, idletime use with a preemption interval shorter than 

the 19ms service time is ineffective, as expected. Foreground performance (left graph) 

in this case is approximately 50% of the base, while background processing (right 

graph) achieves between 50-90%, depending on foreground intensity. 

With a preemption interval of more than the service time of 19ms, the idletime 

mechanism becomes effective. Foreground performance is over 90% (light areas in 

left graph) while background traffic still receives some service (lighter shades of gray 

0 20 40 60 80 100
Foreground Intensity [%] 

0

20

40

60

80

100

120

140

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

 

0% 100%
Normalized FG Theoretical Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

0

20

40

60

80

100

120

140
Pr

ee
m

pt
io

n 
In

te
rv

al
 [m

s]
 

 

0% 100%
Normalized BG Theoretical Throughput

Service 
Time

Max. FG 
Inter- 

Arrival 
Time

 

Figure 4.19. Predicted foreground (left) and background (right) performance of an idletime disk scheduler. 



 
132

for low intensities in right graph). Note that the vertical bars on the bottom left 

indicate a performance “hump” between 5-40% intensity, with a peak at 15%. 

Figure 4.19 illustrates two other interesting points. First, when the preemption interval 

is less than the service time and foreground intensities are high, the idletime scheduler 

degenerates into a simple priority queue. In this case, foreground and background both 

receive approximately 50% of the capacity. This indicates that priority queuing alone 

can be insufficient to establish idletime processing, even when high loads favor the 

formation of queues.  

Secondly, Figure 4.19 illustrates how background processing is completely starved 

when the preemption interval exceeds the foreground inter-arrival time maxt  of 100ms. 

The extreme case occurs at 90% intensity and higher, where this happens with a 

preemption interval that is only a few milliseconds longer than the service time. 

4.4.3 Network Interface 

This scenario predicts network send performance based on the setup shown in Figure 

4.14. Here, the two load-generating processes send streams of UDP packets through 

 0

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100

Th
ro

ug
hp

ut
 [M

b/
s]

Foreground Intensity [%]
 

Intensity 
[%] 

Throughput 
[Mb/s] 

 Intensity 
[%] 

Throughput 
[Mb/s] 

1 3.35  55 151.64 
5 14.36  60 165.27 
10 28.14  65 179.30 
15 41.92  70 192.67 
20 55.76  75 206.59 
25 69.58  80 220.27 
30 82.51  85 234.09 
35 96.77  90 247.62 
40 110.19  95 261.79 
45 124.15  100 275.95 
50 137.64     

Figure 4.20. Baseline UDP performance of a network interface without idletime presence. 



 
133

the same network interface. The performance estimates presented in this section 

correspond to the experimental setup evaluated in Section 6.2.1.1 and will be 

compared against them in Section 7.1.1.1. 

The baseline UDP send performance :r I → \  that describes performance in the 

absence of idletime use is based on measurements of the Intel PRO/1000F Fiber 

Gigabit Ethernet Adapter as displayed in Figure 4.20. This network card has a 

measured mean service time of 0.05ms at a packet size of 1500 bytes, including kernel 

processing. 

Looking at the foreground performance (Figure 4.21, left graph) in detail, there are 

two regions of different performance. In the L-shaped area, performance is 60-70% of 

the baseline. In the rectangular area above it, performance is over 90% of the baseline. 

0 20 40 60 80 100
Foreground Intensity [%] 

0

1

2

3

4

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%
Normalized FG Theoretical Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

0

1

2

3

4
Pr

ee
m

pt
io

n 
In

te
rv

al
 [m

s]

0% 100%
Normalized BG Theoretical Throughput

Service 
Time

 

Figure 4.21. Predicted foreground (left) and background (right) performance of an idletime network scheduler 
with UDP traffic. 



 
134

Inside the L-shaped area, the idletime scheduler is not effective. In the narrow 

horizontal part of the L, the preemption interval is shorter than the service time of 

0.05ms. However, expected performance is also lower in the vertical part of the L, 

with intensities less than 17ms. 

The right graph of Figure 4.21 shows the corresponding background performance. The 

gray stripes indicate that background performance gets progressively worse as 

foreground intensity increases, and effectively starves when foreground intensity 

reaches 100%. This is the desired behavior, and indicates that background 

performance is relatively high when foreground load is small – the idletime scheduler 

is effective in filling the available idle capacity with background work. 

The background performance graph on the right of Figure 4.21 looks very different 

FG 
Inter- 
Arrival 
Time

0 20 40 60 80 100
Foreground Intensity [%] 

0

1

2

3

4
Pr

ee
m

pt
io

n 
In

te
rv

al
 [m

s]

0% 100%Normalized BG Theoretical Throughput

Service 
Time

0 20 40 60 80 100
Foreground Intensity [%] 

0

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

Background (BG) Performance

Idletime scheduling inffective: 
Limited BG performance decrease.

Complete BG 
starvation.

0% 100%

Idletime scheduling effective: 
Complete BG starvation.

Scheduler 
effective: 
BG performance 
decreases with
increasing FG intensity 
and preemption interval.

 

Figure 4.22. Visualization of the preemption interval range shown in Figure 4.21 (right) compared to the overview 
from Figure 4.17 (left). 



 
135

from the overview shown in Figure 4.17. The latter showed two distinct triangular 

regions that split the middle area along its diagonal. In the top right triangle, 

background performance was extremely low, because idletime use stalled. In Figure 

4.21, however this does not seem to occur. 

The reason for this apparent discrepancy is that the service time of the network 

interface (0.05ms) is orders of magnitude less than the assumed inter-arrival rate of the 

foreground requests (100ms). The maximum preemption interval shown in Figure 4.17 

is 5ms. Thus, Figure 4.17 shows only the small strip of the overview graph that lies 

right above the service time, where the effects of the preemption interval length on 

background throughput are not yet significant. Figure 4.22 visualizes this effect. 

4.5 Summary 

This chapter presented the detailed operation of an idletime scheduler based on a 

preemption interval, which bounds the preemption cost by relaxing the work 

conservation property. It formally defined the required properties in terms of a model 

that describes general resource processing, and presented a quantitative analysis that 

predicts the macroscopic behavior of the scheduler for different resources and 

workloads. 

The next chapter discusses a prototype implementation in the FreeBSD operating 

system. Chapter 6 evaluates the performance of the prototype in a series of 



 
136

experiments, and compares the measured performance against the results of the 

quantitative analysis presented in this chapter in Section 4.4. 



 
137

5. Implementation 

The previous chapter has given a detailed, formal description of the proposed idletime 

scheduler. This chapter will derive all algorithm variants that satisfy the conditions 

specified in Chapter 4 and discuss their specific characteristics. It will then identify the 

most promising variant as a basis for the implementation (presented in later sections of 

this chapter) and experimental evaluation (Chapter 6). 

5.1 Scheduler Variants 

This section will discuss the behavior of the idletime scheduler in terms of 

deterministic finite state machines. A resource with support for idletime scheduling 

using a preemption interval can be in four possible states. It can be idle (state I), 

process an active foreground request (state F), process an active background request 

(state B), or stall background processing during the preemption interval (state P). As a 

result, the set of states is { }, , ,S I F B P= . The idle state I is always the start state. 

The resource transitions between these states based on the four following events. First, 

a foreground request is at the head of the queue (event f). Second, a background 

                               I F B P
I I I I F I B I P
F F I F F F B F P
B B I B F B B B P
P P I P F P B P P

→ → → →⎛ ⎞
⎜ ⎟→ → → →⎜ ⎟
⎜ ⎟→ → → →
⎜ ⎟

→ → → →⎝ ⎠  

Figure 5.1. Idletime state machine; adjacency matrix template. 



 
138

request is at the head of the queue (event b). Note that due to priority queuing, event b 

cannot occur while a foreground request exists in the queue. Third, the preemption 

interval expired (event t). This can only occur when there is no f. Finally, the queue is 

empty (event i). Hence, the set of events is { }, , ,E f t b i= . 

The usual method of describing deterministic state machines is through an adjacency 

matrix, where each row describes the state transitions from a given state, and each 

column describes the state transitions into each state. For the given set S of states, 

Figure 5.1 shows the template for the corresponding adjacency matrix. 

Each X Y→  transition can occur on a given event e E∈ . Clearly, a large number of 

state machines exist for the given set of events 16(4 ) . The remainder of this section 

will reduce the number of variants to arrive at a small set of viable candidate 

mechanisms that conform to the idletime scheduling principles. 

The first, obvious observation is that the resource shall remain in state I as long as it 

remains idle (event i). Secondly, Section 4.2.3 has identified strict work conservation 

for foreground requests as a requirement for idletime scheduling based on preemption 

                                  

                        

    

I F B P

I
F
B
P

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

i f

f

f

f

I

F BP

f

f

ff

i

Figure 5.2. Idletime state machine with initial constraints. 



 
139

intervals. It requires that the resource must immediately transition to state F when the 

head of the queue contains a foreground request (event f). These two observations 

constrain the adjacency matrix and result in this state diagram shown in Figure 5.2 

(slots with rectangular placeholders are yet unspecified).  

Another constraint is that a timeout event t will only happen during the preemption 

interval (when in state P). Repeated timeouts are not useful, ruling out the transition 

P P→  on t. Because event t implies that there is no foreground request queued (not 

f), always transitioning to the idle state I on event t is the only useful choice. 

Furthermore, a preemption interval only starts after useful work, i.e., following state F 

or state B. They never follow state I, ruling out the I P→  transition. This results in 

the state machine shown in Figure 5.3. 

The key criterion for the idletime scheduler is that a preemption interval occurs when 

switching from foreground to idletime work. This means that all paths from state F to 

state B must go through state P (the preemption interval), eliminating F B→  and 

F I→ . Consequently, state P must follow state F for both events b and i. Note that on 

event b, F P→  does not consume b. The /b b  notation signifies this in Figure 5.4. 

                                  

                    

     

I F B P

i fI
F f
B f
P f

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

-

-

t - -

I

F BP

f

f

ff

i

t

Figure 5.3. Idletime state machine with additional constraints. 



 
140

Furthermore, entering state B requires an event b. Thus I B→  can only occur on 

event b.  

The resource can only process background requests that exist at the head of the queue; 

meaning that entering state B requires event b. This rules out B B→  on event i. Also, 

B I→  on /b b  has no use, because I B→  on event b would immediately follow. For 

event b in state B, the only two possibilities are therefore B B→  or B P→ . 

Similarly, the only possibilities for event i in state B are B I→  or (again) B P→ . 

Figure 5.5 shows all four possible variants, with the different transitions highlighted 

using thicker arcs. 

The four state machine variants in Figure 5.5 all satisfy the idletime properties defined 

in earlier sections of this chapter. They are prioritized, preempting, and strictly work 

conserving for foreground requests, and weakly work conserving for idletime requests. 

Whenever the resource switches from foreground to idletime use, it incurs a 

preemption interval. In terms of the state machine, this means each path from F to B 

will visit P. 

                                
                    

    

I F B P
i fI

fF
B f
P t f

−⎛ ⎞
⎜ ⎟− ∨⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠

b
- b/b i  

I

F BP

f

f
ff

i

tb/b ∨ i

b

Figure 5.4. State machine after third set of constraints. 



 
141

However, several differences exist between the four variants. The first two variants in 

Figure 5.5 will remain in state B for a burst of b events, whereas the second two will 

switch to state P and require a timeout on each b event. The difference is that the first 

two variants will incur a single preemption interval before each burst of idletime 

requests: b IB+ +→ . The second two will instead incur a preemption interval before 

           
            

  /

I F B P
I i f b
F f b b i
B f
P t f

−⎛ ⎞
⎜ ⎟− − ∨⎜ ⎟
⎜ ⎟
⎜ ⎟

− −⎝ ⎠

i b -

I

F BP

f

f
ff

i

tb/b ∨ i

b

b

i

              
             

  /

I F B P
I i f b
F f b b i
B f
P t f

−⎛ ⎞
⎜ ⎟− − ∨⎜ ⎟
⎜ ⎟
⎜ ⎟

− −⎝ ⎠

- b i

I

F BP

f

f
ff

i

tb/b ∨ i

b

b

i

                 
            

  /

I F B P
I i f b
F f b b i
B f
P t f

−⎛ ⎞
⎜ ⎟− − ∨⎜ ⎟
⎜ ⎟
⎜ ⎟

− −⎝ ⎠

i - b/b

I

F BP

f

f
ff

i

tb/b ∨ i

b

b/b

i

              
             

  /

I F B P
I i f b
F f b b i
B f
P t f

−⎛ ⎞
⎜ ⎟− − ∨⎜ ⎟
⎜ ⎟∨
⎜ ⎟

− −⎝ ⎠

- - b/b i

I

F BP

f

f
ff

i

tb/b ∨ i

b

b/b ∨ i

Figure 5.5. Four possible variants of the idletime state machine. 



 
142

each idletime request in a burst: ( ) ( )bt I BPI+ +→ . In some sense, the first two variants 

are strongly work conserving for idletime requests once state B is reached and idletime 

use begins, whereas the last two variants are always weakly work conserving for 

idletime requests.  

Idletime performance of the two variants that are strongly work conserving for the 

idletime workload will be significantly higher than for the weakly work conserving 

variants. On the other hand, the additional preemption intervals before each idletime 

request enforced by the weakly work conserving variants increases the likelihood that 

arriving foreground requests will find the resource idle. They can consequently further 

decrease foreground delays. Because the purpose of a preemption interval is delaying 

idletime use after foreground use, enforcing additional preemption intervals between 

idletime requests – when the last foreground request could have happened long ago – 

is not likely to be useful. 

The second difference between the variants is their behavior when idletime use is 

bursty, i.e., when i events occur between b events. The first and third variant in Figure 

5.5 will immediately enter the idle state I when event i is encountered during idletime 

I

F BP

f

f
ff

i

tb/b ∨ i

b

b

i

 

Figure 5.6. Variant of the idletime scheduler chosen for implementation. 



 
143

use in state B: ( ) ( )bi I BI+ +→ . The second and fourth variants enter a preemption 

interval P instead, and require additional timeouts: ( ) ( )bit I BPI+ +→ . Extra 

preemption intervals between two idletime bursts will therefore decrease idletime 

performance, and in turn reduce foreground delays. As before, however, enforcing 

additional preemption intervals between bursts of idletime use – without occurring 

foreground use – is not likely to be useful. 

Therefore, the first variant – shown in Figure 5.6 – was chosen for implementation and 

experimental evaluation (see Chapters 5 and 6). It maximizes idletime performance by 

avoiding preemption intervals between successive idletime requests, as well as 

between bursts of idletime requests. Because maximizing idletime use was the 

secondary objective of a successful idletime mechanism (prevention of foreground 

delays is the primary objective), the first variant appeared most functional. 

5.2 Implementation Overview 

This section will discuss the prototype implementation of idletime scheduling for two 

different resources, a disk drive, and a network interface. Both are simple, localized 

modifications to release 4.7 of the FreeBSD operating system. Chapter 6 will present 

an extensive experimental evaluation of the prototype, and compare it to the predicted 

performance derived from the model in Section 4.4. 



 
144

The prototype implementation tags each resource request as either regular or idletime. 

Idletime schedulers in the system use the tags to prioritize the request stream 

according to idletime properties. The prototype implementation defines a new idletime 

option for file descriptors (including sockets), that indicates whether resource 

operations occur in the foreground – the default – or background. A process can 

explicitly set and clear the idletime option to start or stop issuing background requests, 

respectively. While the option is set, the kernel tags all operations on the descriptor as 

idletime. 

A new file descriptor option requires application changes to use idletime capacity. 

However, other alternative idletime APIs, to allow unmodified applications to execute 

during idletime, are possible. One example would be to simply overload the meaning 

of CPU priority, and treat all resource requests from processes running with less than a 

specific CPU priority as idletime. Another variant is redefining the POSIX idletime 

buffer cache

character device driver

hardware

system call interface to the kernel

VM

network interface
drivers block device driver

MFS
cooked

disk raw
disk
and
tty

tty

line
discipline

FFS
LFS

NFS

network
protocols

socket
VNODE layer

local naming (UFS) special devices

active file entries

swap
space

manager
idletime
network

scheduler idletime disk scheduler

 

Figure 5.7. FreeBSD kernel I/O overview. Adapted from [MCKUSICK1996]. 



 
145

flag – originally defined for CPU scheduling – as a general idletime flag covering 

other resources [POSIX1993]. Finally, for idletime networking, specific, reserved port 

ranges or IP aliases could indicate idletime use. 

Both the modified network and disk schedulers implement the preemption interval 

mechanism with the standard BSD timing facilities [VARGHESE1997]. A separate timer 

is associated with each network and disk device. The timer restarts whenever the 

scheduler for the given resource reenters state P (see Section 4.3). While the timer is 

active, the resource is in its preemption interval (resource condition q is satisfied). 

Upon timer expiration, the resource either starts serving background requests (entering 

state B) or becomes idle (state I). 

Neither prototype implementation modifies the device drivers of the resource for 

which they implement idletime use. This is important, because idletime use would 

otherwise incur a significant deployment issue due to the multitude of drivers in a 

typical system that would all require modifications. Instead, the prototype 

implementations are simple, localized modifications at a higher system layer. In Figure 

5.7, the idletime disk scheduler operates at the border between the buffer cache and 

the block device driver, and the idletime network scheduler operates at the border 

between the network protocols and network interface drivers. 



 
146

5.3 Idletime Disk Service 

To issue background disk requests, a process uses the fcntl system call to set the 

idletime option on an open file descriptor. The kernel will then tag all underlying 

block transfers for idletime scheduling at the buffer queue. 

Figure 5.8 shows an overview of the processing involved in disk I/O, using the read 

system call as an example. (The write operation is similar but simpler, and does not 

exhibit all of the issues of the read case). 

The native file system in FreeBSD is UFS, a variant of the original Berkeley Fast File 

System [MCKUSICK1984]. For UFS, the corresponding vnode operations check 

whether the requested block resides in the cache. When it does, the kernel copies its 

contents to the application buffers and process execution resumes without any physical 

disk I/O. If the block is not cached, the kernel schedules physical disk I/O (clustered or 

unclustered), signals the device, and switches to other tasks until I/O completes. 

Meanwhile, the device driver dequeues a waiting I/O request from its work queue, 

issues the request to the underlying hardware, and signals completion to the waiting 

vnode operation after the disk request finishes. After copying the data into the 

application-provided buffer, as well as adding the retrieved block to the buffer cache, 

process execution resumes.  



 
147

The current system implements idletime scheduling by replacing the standard 

bufqdisksort algorithm, which normally implements the C-LOOK variant of the 

elevator seek algorithm [WORTHINGTON1994]. The prototype replaces this with two 

queues for foreground and background requests, each managed by the original C-

LOOK variant to establish prioritization, plus the preemption interval mechanism 

described in Chapter 4. 

read

vn_read

(*fo_read)

VOP_READ

cluster_read

Process Vnode Layer File System Device Driver

breadn

may cluster

may not
cluster

(*d_strategy)

bufqdisksort

disk IRQ

cluster_rbuild

read
more

cluster done

more to read or read-ahead

biowait done

disk IRQ

bufq_first

disk DMA

biodone

more
queued

done

uiomove

getblk

block in
cache

idletime disk
scheduler

 

Figure 5.8. FreeBSD disk I/O processing. 



 
148

Many modern disk drives service multiple concurrent operations, and manage the 

processing order internally in hardware. Often, the on-disk hardware queue does not 

support request priorities, and many drives reorder pending foreground and idletime 

operations to lower the combined service time. This is another example illustrating 

why a simple priority-based scheme does not support effective idletime use when 

some resources remain unmodified (see Section 4.3.2). Preemption intervals can 

counteract these effects, and still support idletime use. The device driver will stall 

idletime requests during the preemption interval and prevent them from entering the 

hardware queue. This way, they cannot interfere with regular operations on-disk, 

decreasing the impact of idletime use on foreground performance. 

One performance-enhancing feature of the UFS file system is its buffer cache, as 

previously described. A second feature is read-ahead: during breadn or cluster_read, 

the file system uses a heuristic to predict whether the most recent request history 

corresponds to a sequential read operation. When it does, the file system will 

speculatively generate additional read operations for the next disk blocks. When 

predicted correctly, these blocks will already reside in the buffer cache when the 

application requests them, improving performance. Furthermore, read-ahead of larger 

chunks can sometimes take advantage of more efficient bulk I/O commands, further 

increasing performance. 

For idletime use, both caching and speculative read-ahead are problematic. First, the 

buffer cache is of limited size. Using it to hold idletime data can decrease regular 



 
149

foreground performance, if it flushes foreground data from the cache. Section 2.3.5 

already discussed cache pollution in detail, and explained how treating the cache itself 

as a spatially shared resource would support idletime use. The prototype 

implementation does not support such idletime caching. Instead, the prototype 

completely disables caching of idletime data – the buffer cache only holds foreground 

data. Only the buffer cache inside the operating system was disabled. On-disk 

hardware caches remained active and could lead to reduced performance when the 

disk drive flushed buffered foreground data to cache new idletime information. 

Read-ahead is also problematic for idletime service, because it can further decrease 

foreground performance by causing additional preemption costs. When the file system 

determines that an idletime process is performing a sequential read, it schedules many 

additional speculative read-ahead operations. These speculative I/O operations will 

receive service along with the single application-requested I/O operation, and lengthen 

the duration of idletime use of the device. This will delay new foreground requests 

arriving during this time, and lower foreground performance. The prototype 

implementation accordingly disables read-ahead completely for idletime use. 

Some aspects of the idletime disk scheduler are similar to other research. McKusick’s 

proposes decreasing the aggressiveness of a background fsck operation that repairs file 

systems after a crash [MCKUSICK2002]. Background fsck delays each disk request of 

processes with positive nice values (low priority) whenever the disk queue is not 

empty. The specific delay time depends on the nice level of the issuing process. This 



 
150

scheme is similar to the idletime variant discussed in Section 5.1 that enters a 

preemption interval after each background request, and suffers from the same low 

throughput. 

Jeff Roberson’s prio patch [ROBERSON2002] changes FreeBSD’s disk scheduler from 

using a FIFO to a two-level priority queue. It does not include preemption intervals, 

and therefore suffers from decreased foreground performance under high idletime 

loads due to frequent preemption costs.  

A third proposal is the anticipatory disk scheduler [IYER2001], which determines delay 

times for each disk request to improve spatial and temporal locality among requests 

from different processes. It proposes a concept similar to preemption intervals that 

keep the disk idle for short periods of time while requests are queued, relaxing work 

conservation. The anticipatory scheduler focuses on improving locality of reference – 

and hence performance – through these stall times, by giving process the opportunity 

to generate additional requests for disk blocks near the current head position. Unlike 

the proposed idletime scheduler, the anticipatory disk scheduler is specifically tailored 

to disk resources (hence the name), does not support priority levels, and can as a result 

not support idletime use. 

Disk drives are stateful resources, where a previous request can affect the processing 

time of the current one because of disk head location. This violates the isolation 

property, as disk head location is a side affect that could delay foreground 



 
151

performance. Some proposals discuss disk head relocation during idletime 

[KING1990][MUMOLO1999]; no such mechanism was implemented for the initial 

idletime scheduling prototype. However, disk head relocation and similar mechanisms 

to mask the presence of idletime use are one direction for future research. 

5.4 Idletime Network Service 

Network support for idletime use is more complex than the disk prototype discussed in 

the previous section. Unlike disk accesses, idletime networking requires support at 

remote systems along the paths idletime packets take through the network. The first 

part of this section will discuss these requirements in detail, whereas the second part 

focuses on the prototype implementation. 

5.4.1 Networking Overview 

Idletime networking is a simple extension of the current Internet service model, where 

routers (and hosts) treat packets equally according to a best-effort discipline 

[CLARK1988]. Its fundamental principles remain, and the Internet may still reorder, 

drop, or duplicate packets. Idletime service is strictly a per-hop function of giving 

higher processing or bandwidth preference to certain packets. This is not a new idea: 

the original IP specification [POSTEL1981] contains support for a precedence field in 

the datagram header to indicate forwarding priorities. 



 
152

More recently, some of the proposed extensions to support differentiated services in 

the Internet [BLAKE1998] are similar to idletime networking. Expedited forwarding 

[DAVIE2002] redefines a value in the IP type-of-service field to mark some packets 

with a higher forwarding priority. It also suggests configuring a rate limit for 

expedited packets, in order to prevent starvation of lower-priority traffic. Although its 

focus is on providing provisioned virtual links, it can also support idletime networking 

by sending all regular traffic using expedited packets, and idletime data with regular 

best-effort packets. 

A combination of two other proposals from the differentiated services community is 

also similar to idletime networking. One proposal has routers mark packets as in or out 

of compliance with their assigned traffic class [CLARK1998]. During congestion, 

packets marked as out are give drop preference (similar to ATM’s cell-loss-priority bit 

[ATM1999] or frame relay’s discard-eligible bit [THIBODEAU1998]). The second 

proposal has routers forward packets in strict order of priority [GUPTA1997]. Together, 

these proposals support idletime use by giving drop preference and lower forwarding 

priority to idletime packets. [CARLBERG2001] and [MAY1997] propose further service 

models based on these mechanisms. Section 8.4 discusses this and other related 

research in more detail. 

All of these proposals focus on router support for their various service schemes. 

Prioritization is an important component of idletime use. For busy routers with long 

queues, priority queuing alone may be the critical property supporting idletime use. 



 
153

However, Section 4.3 showed how prioritization alone is ineffective for light 

workloads. This applies to lightly loaded routers as well, where preemption costs can 

delay foreground use, even with priority queuing. A queue scheduler with a 

preemption interval can further minimize these delays. 

One approach to decrease preemption costs for network transmission uses small 

packet sizes [BORMANN1999]. Because packet transmissions are usually not 

preemptable, smaller packet sizes allow switching service to newly arriving, higher-

priority traffic more frequently. Although originally targeted at low-bitrate links where 

preemption costs are high for long packet sizes, it may also improve foreground 

performance when applied to idletime traffic on higher-speed links. However, small 

packet sizes significantly increase the interrupt load on end systems, which can 

decrease overall system efficiency [MOGUL1997]. Furthermore, most routers are 

packet-rate-bound, and may sustain lower overall throughput with smaller packet 

sizes. 

Idletime scheduling with a preemption interval is also important for end systems. 

Routers perform very limited operations at layers 2 and 3, and can therefore support 

idletime service more easily than end systems, with very complex operations at all 

layers of the protocol stack. The next section will discuss the current prototype for 

idletime networking in detail. 



 
154

5.4.2 Prototype Implementation 

To start sending idletime traffic, a process uses the setsockopt system call on an open 

socket to set the idletime option. The idletime scheduler operates at the network layer. 

The kernel tags IP packets sent from a socket that has the idletime option set with a 

particular type-of-service value. The current implementation uses 0x20, which the 

Internet2’s Q-Bone Scavenger Service proposes for a similar purpose 

[SHALUNOV2001]. The current implementation supports IPv4, but IPv6 support is 

straightforward using the traffic class field in the IPv6 header. 

When receiving a packet with the type-of-service field set to idletime, the kernel will 

set the idletime option on the corresponding receive socket. This causes future 

application responses on the same socket to use idletime traffic automatically also. A 

future release will make this behavior optional, to give applications explicit control 

over their service level. 

send buffer socket send buffer device send queue NIC TX queue

receive buffer socket receive buffer IP receive queue NIC RX queue

w
ire

send buffer device send queue NIC TX queue

receive buffer socket receive buffer IP receive queue NIC RX queue

w
ire

process socket layer network layer hardware

CPU scheduler transport protocol device interrupt link access protocol

TC
P 

pr
oc

es
sin

g
U

D
P 

pr
oc

es
sin

g

 

Figure 5.9. Queuing at different layers in the network stack. 



 
155

The preemption interval scheduler for network idletime service extends the ALTQ 

queuing framework [CHO1998], which is a part of the KAME IPv6/IPsec 

implementation [JINMEI1998]. ALTQ replaces the standard FIFO outbound queue 

(device send queue in Figure 5.9) with configurable queuing disciplines, including a 

priority queue, which served as the basis for the idletime scheduler extensions. 

ALTQ only modifies outbound queues. However, systems also queue inbound packets 

during receive processing, using a FIFO by default (see Figure 5.9). An earlier 

research effort produced an ALTQ extension to support different queuing disciplines 

for the inbound queue [EGGERT2001A]. However, the idletime inbound module is a 

modification of an earlier version of ALTQ, and was hence not used for this prototype 

implementation. 

Figure 5.10 shows a simplified overview of processing in the network stack of the 

FreeBSD operating system. The idletime scheduler replaces the indirect ifq_dequeue 

call all network drivers make to obtain the next packet to send. In the original 

implementation using a FIFO queue, this call would simply return the packet at the 

head of the queue. 

Unlike disk scheduling, no known implementation of a network scheduling 

mechanism exists that relaxes the work conservation principle. Most research into 

providing different priority levels of network service focuses on routers 

[CLARK1998][SHALUNOV2001]. 



 
156

Routers forward traffic but do not source or sink significant amounts of traffic 

themselves. Their processing environment is significantly simpler compared to an end 

system. Furthermore, routers are highly optimized for packet forwarding at line rates, 

and their bottleneck resources are engineered to be the egress interfaces. As a result, 

effective priority mechanisms for routers can focus on queue management alone, and 

need not consider effects of higher-level processing required at an end system. 

write

(*pru_send)

sosend

udp_output

(*pru_send)

sosend

tdp_output

sbwait

ip_output

(*if_output)

ifq_enqueue

(*if_start)

ifq_dequeue

NIC DMA

NIC IRQ

...

UDP

TCP
so_snd
not fullso_snd full

may not segment may segment

after sowwakeup

ifq not fullifq full

ifq not
full ifq full

Process Socket Layer Transport Protocol Network Layer Device Driver

idletime
network

scheduler

 

Figure 5.10. FreeBSD network stack processing. 



 
157

5.5 Implementation Considerations 

One key difference between the prototype implementation and the initial model 

presented for idletime service in Chapter 4 is the starting point of the preemption 

interval. The prototype implementation starts the preemption interval timer when the 

resource starts processing a foreground request, instead of immediately after it 

finishes. 

This difference to the model was a design decision, and allows investigation of 

scenarios where the preemption interval length is shorter than the service time of the 

resource. This also simplifies the implementation for resources that internally batch 

together or reorder requests in hardware. They would otherwise require individual 

driver modifications instead of a single modification at a higher layer. The quantitative 

analysis in Section 4.4 already assumed that a preemption interval starts at the 

beginning of a foreground request, to allow for easy comparison of the predicted and 

measured performances (see Section 7.1.1). 

t7t4 t5 t6

Time
t1 t2 t3

R1

I
R1

R2

I

Preemption
Interval

R2 I
R2

Preemption
Interval

I

I

t4 t5

Time

Request
Queue

Active
Request

t1 t2 t3

I
R1

I
R2

I

II

Preemption
Interval

Preemption
Interval

R2R1  XI

Figure 5.11. Effects of preemption interval length when preemption intervals start at the beginning of foreground 
requests. 



 
158

Figure 5.11 illustrates this difference to the model (left diagram), and shows how 

preemption intervals shorter than the service time of the resource become ineffective 

(right diagram). This happens, because the preemption interval expires while its 

corresponding foreground request is still active, and the idletime scheduler 

degenerates into a priority queue. 

The preemption interval timers in the prototype implementation use the standard 

FreeBSD timing facilities [VARGHESE1997], which offer very efficient, constant-time 

timer operations. However, the current prototype scheduler incurs a timer restart for 

each foreground request. The timer management overhead could become noticeable 

for very high-rate resources. A first improvement is to batch foreground requests 

together and only restart the timer at the end of a batch. Additionally, improvements to 

the timer facility itself can further decrease this overhead [ARON2000]. Very high-rate 

resources may require direct use of hardware timers. 

One limitation of the current prototype is that the length of preemption interval is a 

per-scheduler variable for each scheduler. This means that all network or disk idletime 

use at a given time is based on the same preemption interval length. Although this 

does not affect the validity of the benchmarks presented in Chapter 6 – because they 

only measure idletime use on a single resource – a future revision must address this 

issue. The length of the preemption delays is clearly a per-resource property, and will 

need to be maintained as such by the system. 



 
159

Other proposed system optimizations could also further improve the idletime 

scheduler. One example is lazy receiver processing (LRP) [DRUSCHEL1996]. LRP 

demultiplexes the incoming packet stream at the link layer into channels according to 

their destination socket. It then performs receiver protocol processing at application 

priority. Its main goal is increasing system fairness and stability under high traffic 

loads by shortening the time spent in response to device interrupts. Without a 

mechanism like LRP, the system can enter livelock under high network loads 

[MOGUL1997], where it spends all of its cycles during interrupt processing, and 

higher-layer processing effectively stalls. 

5.6 Summary 

This chapter described the possible variants for an idletime scheduler based on the 

properties identified in Chapter 4, and identified the best possible variant for prototype 

implementation. To establish idletime disk service, an idletime scheduler using 

preemption intervals replaced the traditional bufqdisksort algorithm. Idletime 

networking operates as a similar extension to the ALTQ queuing framework. 

Applications use these new capabilities through an extended file descriptor interface 

that offers idletime service as a new per-descriptor option. 

The next chapter will experimentally evaluate these prototype implementations, and 

compare their performance against the predicted behavior, based on the quantitative 

analysis in Section 4.4. 



 
160

6. Evaluation 

The previous chapter described the prototype implementation of the idletime scheduler 

defined in Chapter 4. This chapter provides a detailed experimental investigation of 

the measured performance of the prototype under various loads and discusses the 

results. Later sections of this chapter will then compare the experimental performance 

numbers with the predicted performance based on the quantitative analysis in Section 

4.3.1. 

All experiments in the remainder of this section follow the same basic setup shown in 

Figure 6.1, which is identical to the scenario modeled in the quantitative analysis in 

Section 4.3.1. Two benchmark processes run concurrently, one issuing foreground 

requests, the other issuing background requests for the same resource. The benchmark 

processes measure the perceived throughput and latency for each request. 

The intensity of the foreground is one variable of the experiment and varies between 

1-100%. Foreground intensity specifies the fraction of each CPU quantum a process 

spends generating resource requests. For example, at 50% intensity a process spends 

half its cycles generating load and half its cycles performing other tasks. Varying the 

Resource

Foreground
Process

Background
Process

Idletime
Scheduler

Variable Intensity: 1-100% Fixed Intensity: 100%
Preemption Interval

Measure Foreground Performance Measure Background Performance

 

Figure 6.1. Experimental setup. 



 
161

foreground intensity allows to study the impact of idletime processing as the 

foreground workload increases. For this purpose, the exact foreground request patterns 

generated through this approach are not relevant.  

The background process is greedy, and tries to consume as much resource capacity as 

possible. The intention of this work is to utilize any idle resource capacity for useful 

work, having the background process spend all its cycles generating resource requests 

models this scenario. It is important to note this models the worst-case scenario for 

idletime use, because each time a new foreground request arrives, it incurs a potential 

preemption delay due to ongoing idletime use. The resulting performance 

measurements therefore also determine the worst-case performance of the scheduler. 

A second variable of the experiment is the length of the preemption interval. 

Depending on the resource, it varies from zero up to a few hundreds of milliseconds. 

When the preemption interval is zero, the behavior of the scheduler is identical to a 

simple priority queue. A preemption interval larger than the CPU quantum (100ms) 

completely stalls idletime use. The benchmark processes will generate at least one 

resource request per CPU quantum by design, and the preemption interval can 

therefore never expire. 

The preemption intervals used by both prototype schedulers start at the beginning of 

each foreground requests, not at its end. This difference to the model (see Chapter 4) is 



 
162

due to implementation limitations described in Chapter 5, and similar to the 

quantitative analysis in Section 4.4. 

Each experiment consists of five separate 30-second iterations for each data point 

(unique pair of intensity and preemption interval) to compute the mean foreground and 

background performances and their standard deviations. Standard deviations were 

usually well below 5% and were therefore omitted to avoid cluttering the contour plots 

in the remainder of this chapter. 

Normalizing the mean measured performances against the performance of the baseline 

case (without background work present) allows comparison of the relative impact 

background processing. Again, this is the same normalization used during the 

quantitative analysis in Section 4.3.1, and the remainder of this section will present the 

same contour plots used before.  

It is important to consider both throughput and latency numbers when evaluating the 

effectiveness of an idletime scheme. For each experiment, the following sections will 

present four contour plots side-by-side, showing the normalized mean foreground and 

background throughputs and latencies. Lighter shades of gray in the plots indicate 

areas of better performance (higher throughput or lower latency). 

Figure 6.2 gives a rough overview of the expected contour plots for an ideal idletime 

scheduler, and identifies regions of interest. For example, the scheduler would support 



 
163

close to 100% foreground performance with a preemption interval larger than the 

resource service time, independent of the foreground intensity. This appears as the 

larger, lightly shaded area in the left plot in Figure 6.2. The dashed line cutting across 

both plots signifies the service time of the resource. With a preemption interval of less 

than the service time, the scheduler is ineffective (bottom, darker area in the left plot). 

For reference, the baseline case without idletime processing would appear as a single, 

evenly shaded area of the lightest shade of gray, independent of foreground intensity 

or preemption interval lengths. 

The right plot in Figure 6.2 shows the corresponding background performance in the 

same scenario. An ideal idletime scheduler will utilize available capacities for 

background work (especially at low foreground intensities), but will begin to starve 

background work as foreground intensities rise. Consequently, background 

performance will decrease with increasing foreground intensity and preemption 

0 20 40 60 80 100
Foreground Intensity [%] 

0

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

Foreground (FG) Performance

0 20 40 60 80 100
Foreground Intensity [%] 

0

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

Background (BG) Performance

Idletime scheduling effective: 
High FG performance when  

preemption interval > service time.

Service 
Time

Idletime scheduling inffective: 
Low FG performance.

Scheduler 
effective: 
BG performance 
decreases with
increasing FG intensity 
and preemption interval.

Idletime scheduling inffective: 
Limited BG performance decrease.

Complete BG 
starvation.

0% 100% 0% 100%

Idletime scheduling effective: 
Full FG performance.

Idletime scheduling effective: 
Complete BG starvation.

FG 
Inter-Arrival 

Time

 

Figure 6.2. Overview of the expected performance behavior for an idletime scheduler. 



 
164

interval lengths, as illustrated by the gradient in the larger area in the right plot. With a 

preemption length shorter than the service time, the mechanism is again ineffective. 

Background performance will still decrease with higher foreground intensities, but 

will not become completely stalled (smaller, bottom area in the right plot of Figure 

4.17), and foreground performance will decrease. 

Section 2.1 described the two main criteria for evaluating the effectiveness of an 

idletime scheduler: impact on foreground processing, and amount of background work 

scheduled. An ideal idletime scheme will exhibit performance identical to the baseline 

case across the full range of foreground intensities, for preemption intervals longer 

than a specific resource-dependent bound. In the contour graphs, this will show as 

very light shades of gray. It will also succeed in scheduling some background work 

during idletime, especially at light foreground intensities. This will show in the graphs 

as lighter areas. 

The experiments used PC workstations running release 4.7 of the FreeBSD operating 

system together with a KAME [JINMEI1998] snapshot release that included ALTQ 

[CHO1998], modified to support background processing as described in Chapter 5. 

Each PC was equipped with 512MB of RDRAM and dual 733MHz Intel Pentium-III 

processors. FreeBSD 4.7 can run user processes simultaneously on multiple 

processors, but only allows a single CPU to execute kernel code at any time. This 

eliminates contention between the foreground and background load generators – 

increasing the offered load – without affecting in-kernel processing. 



 
165

6.1 Disk Scheduler Evaluation 

During the disk benchmarks, the foreground and background benchmark processes 

generate fixed-size disk read requests on the same test file containing random data. 

The 8.2GB test file spans a UFS file system that completely utilizes a Western Digital 

Caviar AC28200 disk connected on a separate ATA channel. The drive has a 

manufacturer-reported maximum mean seek time of 15ms and a mean latency of 5ms, 

including controller overhead, resulting in a 20ms total mean service time for a 

random access to a disk block. 

Two separate experiments, presented in the remainder of this section, investigate the 

performance of the idletime scheduler under random and sequential disk accesses. In 

the first scenario, the benchmark processes read single bytes from random locations 

across the test file, causing accesses to single random disk blocks. In the second 

scenario, the processes read 512-byte disk blocks sequentially from the test file. The 

benchmark processes start reading at different offsets into the test file to eliminate 

buffer cache overlap. The benchmark processes also re-mount the test file system 

before each run, which flushes the buffer cache and eliminates cache effects across 

successive runs. 

6.1.1 Random Access 

In this experiment, both foreground and background process read 512-byte disk blocks 

from random locations in the 8.2GB test file. During each run, they read up to 1,600 



 
166

blocks at a rate of up to 60 blocks/second. Figure 6.3 shows the detailed baseline 

performance without idletime presence used for normalization. The error bars indicate 

standard deviation, which is below 0.5 blocks/s in all cases. 

Figure 6.4 shows the throughput (top) and latency (bottom) of the foreground (left) 

and background (right) benchmarks. Lighter shades of gray indicate areas of better 

performance (higher throughput or lower latency). The graphs break down in to three 

major areas: less than 20ms (preemption interval less than service time), greater than 

100ms (preemption interval greater than CPU quantum), and the middle range of 

preemption intervals between 20-100ms. 

With a preemption interval of less than 20ms, the idletime scheduler has no effect. The 

background benchmark monopolizes the disk, receiving 50-100% throughput, while 

the foreground throughput degrades to 50% with increasing intensity. Latency of 

foreground reads is at least a factor of 1.5 higher than the baseline case, while 

background read latencies are low.  

This ineffectiveness of the idletime scheduler is expected with preemption intervals 

 0

 10

 20

 30

 40

 50

 60

 0  20  40  60  80  100

Th
ro

ug
hp

ut
 [b

lo
ck

s/
s]

Foreground Intensity [%]
 

Intensity 
[%] 

Throughput 
[blocks/s] 

 Intensity 
[%] 

Throughput 
[blocks/s] 

1 8.30  55 30.86 
5 8.58  60 33.42 
10 9.34  65 35.66 
15 11.30  70 38.18 
20 13.92  75 40.84 
25 16.18  80 43.08 
30 18.86  85 45.44 
35 21.08  90 48.22 
40 23.64  95 50.00 
45 26.04  100 52.40 
50 28.22     

Figure 6.3. Baseline disk read performance without idletime presence under a random-access workload. 



 
167

shorter than the service time. The mean access delay (seek time plus latency) of the 

drive in this benchmark is approximately 20ms. A preemption interval shorter than its 

service time expires while its corresponding foreground request is still active. Thus, 

any enqueued background request will immediately receive service after processing of 

the last foreground request finishes. The behavior is hence identical to a traditional 

priority queue. 

However, although preemption intervals shorter than the service time fail to address 

foreground performance degradation, they do affect corresponding idletime 

performance. 

The top right graph in Figure 6.4 illustrates that idletime throughput already starts to 

decrease with preemption intervals longer than 10ms. Foreground throughput, 

however, does not benefit from this reduction of idletime load, until the preemption 

intervals exceed the service time.  

The second region of interest has preemption intervals of more than the CPU quantum 

of 100ms. Here, the idletime scheduler almost completely suppresses processing of 

background requests. The preemption interval is longer than almost all inter-request 

gaps of the foreground request stream, independent of the intensity. This allows 

immediate back-to-back execution of foreground requests. While foreground 

throughput and latencies are very close to 100%, background throughput is almost 

zero, and its corresponding latency extremely high (factors in the hundreds). 



 
168

Note that at low foreground intensities of less than 20%, some background requests 

continue to receive service at preemption intervals of 100-120ms. This is due to an 

implementation limitation of the FreeBSD usleep system call used by the benchmark 

processes. It can cause sleep intervals to lengthen under high system load, leading to 

slightly longer inter-arrival times that cause processing of extra idletime requests. 

0 20 40 60 80 100
Foreground Intensity [%] 

0

20

40

60

80

100

120

140

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized FG DISK Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

0

20

40

60

80

100

120

140

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized BG DISK Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

0

20

40

60

80

100

120

140

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

1x  >2xNormalized FG DISK Latency

0 20 40 60 80 100
Foreground Intensity [%] 

0

20

40

60

80

100

120

140
Pr

ee
m

pt
io

n 
In

te
rv

al
 [m

s]

1x  >10xNormalized BG DISK Latency

Service 
Time

CPU 
Quantum

Service 
Time

CPU 
Quantum

 

Figure 6.4. Measured random-access disk throughput (top row) and latency (bottom row). 



 
169

The third region of interest consists of preemption intervals between 20-100ms. Here, 

idletime scheduling improves foreground performance compared to shorter 

preemption intervals, but does not completely suppress background processing, as 

longer preemption intervals do. 

For foreground requests, throughput lies between 70-100% with a latency of 1-1.5 

times baseline. As preemption interval length increases, idletime use stalls at lower 

foreground intensities. At a preemption interval of 40ms, background requests are not 

processed past 90% foreground intensity, whereas with a 80ms preemption interval, 

this happens at 40% intensity. Section 4.4 discussed how the higher arrival rate of 

foreground requests lowers the possibility of preemption interval expiration, and thus 

more easily preempts idletime use. 

Another observation is that the idletime scheduler is effective at low intensities (less 

than 10%), no matter what the length of the preemption interval is. This effect is due 

to priority queuing. With a queue full of background requests, an incoming foreground 

request always moves to the head of the queue and receives service next. At low 

intensities, this is sufficient to achieve throughput comparable to the baseline case. 

However, it must be noted that latency is higher, because queued foreground requests 

block until the active background request finishes. As foreground intensity increases, 

priority queuing alone is not capable of maintaining throughput comparable to the 

baseline, due to the impact of aggregate blockage delays. 



 
170

In summary, idletime scheduling in this scenario is effective, but may permit a 

substantial degradation of foreground performance in some cases. This may still be 

acceptable at lower foreground intensities. A longer preemption interval preempts 

idletime use at lower foreground intensities, and can consequently help to eliminate 

the performance impact when workloads demand it. 

6.1.2 Sequential Access 

The previous section investigated the behavior of the idletime scheduler under a 

random disk access pattern. This section looks at the sequential case, where both 

foreground and background processes perform sequential reads of 512-byte blocks. 

In the previous random-access scenario, caching of disk blocks was not an issue. 

Because of the random access pattern across the 8.sGB test file, the probability of 

repeatedly overlapping accesses was very low. Under the sequential access pattern 

used in this experiment, cache effects between foreground and background can 

become an issue. 

 0

 2

 4

 6

 8

 10

 12

 14

 0  20  40  60  80  100

Th
ro

ug
hp

ut
 [M

B
/s

]

Foreground Intensity [%]
 

Intensity 
[%] 

Throughput 
[MB/s] 

 Intensity 
[%] 

Throughput 
[MB/s] 

1 0.27  55 9.25 
5 1.21  60 9.99 
10 2.28  65 10.52 
15 3.44  70 11.17 
20 4.54  75 11.52 
25 5.33  80 12.46 
30 6.13  85 12.87 
35 6.81  90 12.88 
40 7.56  95 12.89 
45 7.78  100 12.90 
50 8.90     

Figure 6.5. Baseline disk read performance without idletime presence under a sequential-access workload. 



 
171

Even though the results of idletime read operations are not cached (see Section 5.3), 

the results of foreground reads are cached as usual. An idletime request for data that is 

in the cache due to a previous foreground operation will immediately succeed, and 

result in both an inflated background performance as well as an artificially low impact 

on foreground performance. The benchmark processes avoid this effect by starting 

0 20 40 60 80 100
Foreground Intensity [%] 

0

20

40

60

80

100

120

140

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

1x  >2xNormalized FG DISK Latency

0 20 40 60 80 100
Foreground Intensity [%] 

0

20

40

60

80

100

120

140
Pr

ee
m

pt
io

n 
In

te
rv

al
 [m

s]

1x  >100xNormalized BG DISK Latency

0 20 40 60 80 100
Foreground Intensity [%] 

0

20

40

60

80

100

120

140

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized FG DISK Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

0

20

40

60

80

100

120

140

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized BG DISK Throughput

Service 
Time

CPU 
Quantum

Service 
Time

CPU 
Quantum

 

Figure 6.6. Measured sequential-access disk throughput (top row) and latency (bottom row). 



 
172

their I/O at different offsets into the 8.2GB long test file. The foreground process starts 

at the beginning, while the background process starts in the middle of the file (4.1GB 

offset). 

During each run, the processes read up to 800,000 blocks at up to 13MB/s throughput. 

Figure 6.5 shows the detailed baseline performance without idletime presence used for 

normalization. The error bars indicate standard deviation, which is below 0.07MB/s 

for all intensities. 

The performance graphs for the sequential case in Figure 6.6 are different from the 

random-access case shown previously in Figure 6.4. The results for this scenario do 

not exhibit the three distinct areas of behavior found in the previous case. 

Sequential foreground throughput is high (80-100%) and latency low (<1.2x) across 

the board. A smaller, triangular area between foreground intensities of 20-60% and 

preemption interval lengths of 25-80ms shows a slightly lower foreground 

performance with throughputs of 70-90% of the baseline and latencies of up to 1.5x 

the baseline. The random access case (Figure 6.4) has a similar but much more 

pronounced triangle. 

The key difference compared to the random-access case is that in the case of 

sequential reads, almost no idletime requests receive service. The preemption interval 

length has very little influence on this effect. Background throughput is between 0-



 
173

10% of the baseline case, and corresponding latencies are tens to hundreds of times 

higher than the baseline.  

This starvation of background I/O is due to foreground read-aheads. Section 5.3 

explained that in order to avoid foreground delays, the prototype implementation 

disables read-ahead for idletime operations. However, the system will still issue 

speculative read-aheads when it detects sequential foreground access patterns. Read-

aheads essentially multiply the foreground load, because each read request issued by 

an application causes the creation of several additional, speculative read operations by 

the kernel. This occurs even at low intensities, because the kernel heuristic to identify 

sequential reads solely focuses on spatial locality of successive requests, not their 

timing. 

Disabling read-aheads for foreground disk accesses would address this issue, but 

would also result in significantly lower foreground throughputs. Because the major 

focus of the idletime scheduler lies on preserving performance under idletime load, 

disabling optimizations that benefit foreground performance is not useful.  

However, Section 2.2 has discussed how pushing speculative tasks into idletime 

capacity can improve user-perceived system performance. Section 7.2 will outline 

future kernel modifications to address this issue, which will execute speculative read-

aheads using idletime capacity. A modified read-ahead mechanism may be successful 



 
174

in maintaining high foreground performance while permitting limited concurrent 

idletime processing. 

6.1.3 Discussion 

Section 2.1 explained that the two main criteria for an idletime scheduler are minimal 

impact on foreground processing and effective utilization of idle capacity. The 

previous measurements showed that the prototype disk scheduler sustained foreground 

throughputs of 70-100% of the baseline case under idletime load, with comparable 

latencies. With high enough foreground intensities, the scheduler completely preempts 

idletime use, and throughputs and latencies are practically identical to the baseline 

case. 

A main reason for the high impact on foreground performance lies in timing 

granularities. The disk device used for the experiments has a mean service time of 

approximately 20ms for random requests. In the random-access scenario, this means 

that the disk can only serve approximately five random access requests per 100ms 

CPU quantum. Thus, whenever the idletime scheduler starts servicing a single 

background request, it may affect foreground performance by up to 20%. This occurs, 

because the benchmark will generate at least one foreground request per CPU 

quantum. 

The same effect also explains the foreground performance drop using sequential reads 

in the triangular area with foreground intensities between 20-60% and preemption 



 
175

intervals between 30-90ms. Even though idletime use receives almost no service, 

regular performance is still noticeably reduced (10-15%). This is because foreground 

and background processes read at different disk offsets. Each time the idletime 

scheduler services a single background request, it still incurs a 20ms seek time, to 

position the disk head for the background operation. When new sequential foreground 

reads occur during this time, they must wait for this operation to finish, plus 

approximately 20ms to move the disk head back. The net result is a potential 40ms 

foreground delay when an idletime request receives service. 

Consequently, the disk benchmark scenario violates the heuristic for determining 

preemption interval lengths described in Section 4.3.1. The preemption interval should 

be at least an order of magnitude longer than the service time of the resource, in order 

to allow amortization of preemption costs across a burst of foreground requests. It 

should also be significantly less than the inter-arrival time of foreground requests, to 

allow utilization of some idle capacities for background processing. Because the 

primary objective of idletime scheduling is isolation of foreground processing from 

the presence of idletime use, the first rule takes priority whenever a conflict exists. 

The disk benchmark scenario does not satisfy both rules. The service time of the 

resource is 20ms, but preemption interval lengths are less than 150ms. Furthermore, 

foreground arrival rates even at lightest intensities reach 8-10 requests per second, 

corresponding to an inter-request gap of only approximately 80ms. According to the 

heuristic in Section 4.3.1, given the arrival pattern in relation to the service time, the 



 
176

scheduler in this scenario should use a long preemption interval (~200ms) and 

preempt background processing to prevent interference with foreground use. 

6.2 Network Scheduler LAN Evaluation 

The previous section presented experimental measurements of the idletime disk 

prototype, and analyzed them. This section will present a similar discussion for the 

idletime network prototype.  

Crossover patch cords established an isolated, directly connected link between two 

machines, using Intel PRO/1000F Fiber Gigabit Ethernet interfaces. The interface 

cards support 64bit PCI-X at 66 MHz, however, the benchmark hosts only featured 

regular 32-bit PCI slots at 33 MHz. One machine acted as the traffic source, sending a 

mix of foreground and background traffic towards the sink machine. Each set of 

experiments evaluates a combination of two different network protocols (UDP and 

TCP) for foreground and background traffic, resulting in four different experiments to 

evaluate all protocol combinations. 

The TCP benchmark process at the source opens three separate, parallel connections to 

 0

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100

Th
ro

ug
hp

ut
 [M

b/
s]

Foreground Intensity [%]
 

Intensity 
[%] 

Throughput 
[Mb/s] 

 Intensity 
[%] 

Throughput 
[Mb/s] 

1 3.35  55 151.64 
5 14.36  60 165.27 
10 28.14  65 179.30 
15 41.92  70 192.67 
20 55.76  75 206.59 
25 69.58  80 220.27 
30 82.51  85 234.09 
35 96.77  90 247.62 
40 110.19  95 261.79 
45 124.15  100 275.95 
50 137.64     

Figure 6.7. Baseline UDP performance of a network interface without idletime presence. 



 
177

the discard service [POSTEL1983] on the sink. The bandwidth-delay-product of a 

Gigabit link with 1ms delay – which is well above the propagation delay of a local 

link – is approximately 128KB. 

In order to eliminate the socket buffers or system calls as potential bottlenecks, the 

benchmark process increases socket buffers to 128KB, and then proceeds to send 

128K chunks of random data to the sink [JACOBSON1992]. Likewise, the inetd process 

implementing the discard service on the sink machine increases its socket buffers to 

128KB. 

Similarly, the UDP benchmark process uses three separate sockets to send 1400 bytes 

of random data to the discard service on the sink. This avoids fragmentation – the 

underlying device MTU is 1500 bytes – while allowing experimentation with an early 

variant of the idletime scheduler that used IP options instead of overloading the type-

of-service field. 

Unlike TCP send operations, UDP send operations do not block for completion, but 

instead return an error value if a message was not sent, usually due to outbound queue 

exhaustion. In such a case, the process sleeps for 10-15ms, allowing the queue to drain 

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  20  40  60  80  100

Th
ro

ug
hp

ut
 [M

b/
s]

Foreground Intensity [%]
 

Intensity 
[%] 

Throughput 
[Mb/s] 

 Intensity 
[%] 

Throughput 
[Mb/s] 

1 18.46  55 251.65 
5 46.97  60 278.84 
10 68.19  65 296.69 
15 85.97  70 316.04 
20 111.79  75 338.04 
25 131.76  80 356.04 
30 147.88  85 378.11 
35 170.91  90 400.23 
40 188.21  95 417.38 
45 211.61  100 418.14 
50 235.26     

Figure 6.8. Baseline TCP performance of a network interface without idletime presence. 



 
178

before sending more data. 

Four separate experiments are required to cover all possible combinations of TCP and 

UDP foreground and background benchmarks. The preemption interval length for a 

given run was in effect on both source and sink hosts. Although it has no effect for 

UDP senders, receiver-side preemption intervals enable correct idletime scheduling of 

the TCP acknowledgement stream flowing from the sink to the source. 

Figure 6.7 and Figure 6.8 show the detailed baseline performances without idletime 

presence used for normalization. Figure 6.7 displays the UDP baseline performance 

with error bars indicating the standard deviation, which is below 0.9Mb/s for all 

intensities. Figure 6.8 shows the TCP baseline performance; the standard deviation in 

this case is below 1.9Mb/s in all cases.  

6.2.1 UDP Foreground Traffic 

The first two scenarios transmit foreground traffic via UDP, and use UDP or TCP for 

idletime transmissions.  

6.2.1.1 Foreground UDP vs. Background UDP 



 
179

Figure 6.9 shows the throughput (top) and latency (bottom) of the foreground (left) 

and background (right) benchmarks. Both foreground and background benchmarks 

transmit traffic via UDP. The graphs break down in two major areas based on the 

length of the preemption interval: less than 0.05ms, and greater than 0.50ms. 

With a preemption interval less than 0.05ms, the idletime scheduler is not effective. 

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized FG UDP Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized BG UDP Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

1x  >2xNormalized FG UDP Latency

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4
Pr

ee
m

pt
io

n 
In

te
rv

al
 [m

s]

1x  >2xNormalized BG UDP Latency

Service 
Time

Service 
Time

 

Figure 6.9. Measured 1Gb/s Ethernet UDP/UDP throughput (top row) and latency (bottom row). 



 
180

Foreground throughput is 50% of the baseline and latency is higher by a factor of 1.4. 

The background traffic can monopolize the link at lower foreground intensities, and 

performance of both traffic classes evens out as foreground intensity reaches 100%. 

This is expected, as the service time of the resource is approximately 0.05ms, 

including kernel processing.  

With a preemption interval longer than 0.05ms, idletime scheduling becomes very 

effective. At foreground intensities over 10%, both foreground throughput and latency 

achieve over 90% of the baseline case. With lower foreground intensities, foreground 

performance still reaches 60-80% of the baseline case. Unlike during the disk 

measurements, the idletime scheduler here does not suppress background processing 

completely to maintain unchanged foreground performance. Instead, it gradually 

reduces the amount of background traffic as foreground intensity increases. 

Background traffic only stalls at very high foreground intensities (> 90%). 

6.2.1.2 Foreground UDP vs. Background TCP 

The setup of the second scenario is identical to the first, except that background 

transmissions use TCP instead of UDP. Figure 6.10 illustrates the measured 

performance. 

Foreground throughput and latency is almost unchanged from the previous case Figure 

6.9 with UDP background transmissions. Foreground traffic reaches throughput 

numbers of 90-100% with latencies close to the baseline case (1-1.1x) at intensities 



 
181

higher than 20%. For lower intensities, the decrease in performance is slightly higher 

(70-90% throughput, 1.2-1.4x latency); this is also similar to the case previously 

discussed. 

The scheduler is also effective in utilizing idle capacities for background traffic: 

background traffic only stalls at high foreground intensities over 80%. 

One key difference to the previous scenario (Section 6.2.1.1) is the minimum length of 

the preemption interval required to make the idletime scheduler effective. In the 

previous case, the minimum preemption interval was 0.05ms. This scenario requires a 

minimum preemption interval of 0.3-0.5ms. 

This difference may be due to difference in transmission behavior between TCP and 

UDP. Background TCP traffic that is queued inside the kernel at the socket buffer may 

receive preferred service compared to foreground UDP traffic that is queued inside the 

sender process. 

To verify this hypothesis, UDP processing could be modified to enable in-kernel 

queuing. However, this additional buffering may break the traditional UDP API, which 

requires immediate feedback to the application on send errors, and may lead to 

application incompatibilities. 



 
182

One of the strengths of an idletime scheduler using a preemption interval is that it can 

remain effective in such a scenario, by simply increasing the preemption interval. It 

does not require modifications to other schedulers, some of which – as this one – are 

implicit to the operating system.  

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

1x  >2xNormalized FG UDP Latency

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4
Pr

ee
m

pt
io

n 
In

te
rv

al
 [m

s]

1x  >4.09xNormalized BG TCP Latency

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized FG UDP Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized BG TCP Throughput

Service 
Time

Service 
Time

 

Figure 6.10. Measured 1Gb/s Ethernet UDP/TCP throughput (top row) and latency (bottom row). 



 
183

6.2.2 TCP Foreground Traffic 

The next two scenarios transmit foreground traffic via TCP, and use UDP or TCP for 

idletime transmissions.  

6.2.2.1 Foreground TCP vs. Background UDP 

Figure 6.11 shows an experiment where the foreground benchmark uses TCP while the 

background benchmark uses UDP. In a sense, this represents the worst-case scenario 

without idletime scheduling: important (hence foreground) congestion-controlled TCP 

flows share a bottleneck path with greedy, high-rate UDP senders. With FIFO 

schedulers, the UDP traffic can significantly affect – or even starve –foreground 

traffic. 

In such a scenario, an effective idletime mechanism should still sustain foreground 

performance at levels that are comparable to the baseline case without background 

load. Figure 6.11 shows the measured performances in this scenario. Foreground 

throughput and latency are very close to the baseline case with a preemption interval 

longer than 1.25ms. Foreground throughput is 90-100% of the baseline, and latencies 

are 1-1.1x longer. With preemption intervals shorter than 1.25ms, the idletime 

mechanism is not as effective. 

Unlike with foreground UDP traffic, the service time of the resource (0.05ms) is not a 

useful lower bound for effective service times for TCP foreground traffic. 



 
184

Significantly longer preemption intervals of 0.9-1.25ms are required to raise 

foreground performance to levels comparable with the baseline case. 

This lower bound of 1.25ms may not be arbitrary. The round-trip time (RTT) estimator 

in FreeBSD’s TCP implementation uses 10ms timers and averages the measurements 

using fixed-point arithmetic with a scaling factor of eight. This means that 1.25ms is 

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized FG TCP Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized BG UDP Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

1x  >2xNormalized FG TCP Latency

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4
Pr

ee
m

pt
io

n 
In

te
rv

al
 [m

s]

1x  >2xNormalized BG UDP Latency

Service 
Time

Service 
Time

RTT

2x RTT

RTT

2x RTT

 

Figure 6.11. Measured 1Gb/s Ethernet TCP/UDP throughput (top row) and latency (bottom row). 



 
185

the smallest possible RTT estimate for TCP connections. FreeBSD’s RTT estimator is 

a variant of the algorithm described in [BRAKMO1995], which itself is a variant of the 

original algorithm [JACOBSON1988]. [ARON1998] discusses the effects of the RTT 

resolution on TCP performance in detail. 

A shift in observed performance at approximately 1.25ms could therefore indicate a 

correlation between effective preemption interval lengths and the estimated RTT of 

foreground TCP connections. Furthermore, a second, minor performance improvement 

occurs with preemption intervals of over 2.5ms (twice the RTT). This may indicate a 

correlation with delayed acknowledgements, which FreeBSD enables by default. 

Section 6.3 will further investigate these correlations through additional measurements 

in networks with longer propagation delays. 

Figure 6.11 illustrates that the idletime mechanism is again successful in scheduling 

idletime traffic without interference with foreground transmissions. As in the UDP 

scenario previously discussed, background use stops only at over 80% intensity. At 

lower intensities, background throughput reaches up to 80% of the baseline case. 

6.2.2.2 Foreground TCP vs. Background TCP 

The four graphs in Figure 6.12 show the case where both the foreground and 

background benchmarks use TCP. As in the previous case, the graphs split into two 

main regions based on preemption interval length: less than the minimum RTT of 

1.25ms and greater than 1.25ms.  



 
186

The idletime scheduler is ineffective with preemption interval lengths less than 1.25ms 

and foreground performance is substantially worse compared to the baseline. With 

preemption intervals longer than 1.25ms, the idletime scheduler becomes effective, 

and foreground performance is very close to the baseline at 90-100% throughput and 

1-1.2x latency. 

0 20 40 60 80 100
Foreground Intensity [%]

1

2

3

4

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

1x  >2xNormalized FG TCP Latency

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4
Pr

ee
m

pt
io

n 
In

te
rv

al
 [m

s]

1x  >3.9xNormalized BG TCP Latency

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized FG TCP Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized BG TCP Throughput

Service 
Time

Service 
Time

RTT

2x RTT

RTT

2x RTT

 

Figure 6.12. Measured 1Gb/s Ethernet TCP/TCP throughput (top row) and latency (bottom row). 



 
187

The idletime mechanism is again successful in using available capacity to transmit 

idletime traffic. Only at high foreground intensities (> 80%) do background 

throughput and latencies decrease, as is required to minimize interference with regular 

use. 

6.3 Network Scheduler WAN Evaluation 

When foreground transmissions use TCP, the results presented in the previous section 

have suggested that the round-trip time of the connection may influence the lower 

bound for effective preemption intervals. 

All previous experiments occurred on a local network (LAN) with small propagation 

delays less than 0.1ms. FreeBSD’s RTT estimator has a maximum resolution of 

1.25ms due to internal fixed-point arithmetic. Section 6.2.2 found that in experiments 

with TCP foreground transmissions, effective preemption intervals must exceed the 

RTT. Lengthening the preemption intervals past twice the RTT resulted in another, 

minor performance improvement. 

To determine whether the link delay between the benchmark machines affects the 

idletime mechanism, the experiments with TCP foreground traffic (Section 6.2.2) must 

be repeated over a similar wide-area (WAN) link with a longer propagation delay. 

Dummynet [RIZZO1997] is a FreeBSD kernel mechanism to apply artificial delays, 

queue limits, and loss rates to selected flows. Dummynet can simulate a wide-area link 



 
188

by buffering packets in a transmission queue – sized to accommodate the bandwidth-

delay-product of the chosen link – for a given delay.  

However, simulating wide-area Gigabit links with Dummynet is problematic 

[ZEC2003]. Dummynet uses the kernel firewall to identify packets for processing, and 

depends heavily on the kernel timers to control when packets leave the transmission 

buffer. Both mechanisms incur significant overheads at high data rates. Furthermore, 

high data rates cause high interrupt loads, which can decrease system responsiveness 

and eventually lead to livelock [MOGUL1997]. Because Dummynet processing occurs 

at the IP layer, device interrupts cause delays that reduce the accuracy of the 

simulation. These delays can also interfere with user-space processing, and as a result 

affect the benchmark processes themselves. 

Changing the experimental topology from a direct link to a two-hop connection could 

eliminate these issues. A fast intermediate router could perform all Dummynet 

processing; the benchmark systems would perform the same processing as in the 

directly connected case. However, this change in topology modifies the experimental 

setup in ways that may make comparison between the LAN and WAN scenarios 

invalid. 

Switching to a slower link speed is another approach to eliminate Dummynet 

performance issues. A short, empirical investigation has shown that the benchmark 

systems used in the previous sections are powerful enough to simulate a 100Mb/s 



 
189

Ethernet link at 10ms delay using Dummynet. The speed of the underlying link should 

not affect whether the RTT has an impact on effective preemption delays for TCP 

foreground traffic. 

The wide-area experiments presented in the remainder of this section thus retained the 

one-hop topology used in the Gigabit experiments, and instead replaced the Gigabit 

link with a slower 100Mb/s Ethernet connection. Two additional experiments were 

run. The first one, in Section 6.3.1, repeats the Gigabit experiments that used TCP to 

transmit foreground traffic (Section 6.2.2) over the local, directly connected 100Mb/s 

link. Again, a crossover cable connected the test machines, using two Intel PRO/100 

Fast Ethernet adaptors. This first set of experiments establishes a baseline to verify 

that the idletime scheduler is effective in a 100Mb/s LAN. 

The second experiment, in Section 6.3.2, repeats this setup, but increases the link 

delay to 10ms using Dummynet. A buffer of 128KB simulates the bandwidth-delay-

product of the link. The increase in delay and buffer size simulates a WAN link, and 

allows investigation of whether the propagation delay of the link influences the range 

of effective preemption intervals. 

6.3.1 100Mb/s Baseline 

This section repeats the experiment from Section 6.2.2 over the 100Mb/s LAN link. 

The experiments run without artificial delays, to establish a baseline for the next of 

experiments. As before, the propagation delay of the underlying link is less than the 



 
190

resolution of TCP’s RTT estimator. As a result, TCP measures the RTT in this setup at 

1.25ms. 

Figure 6.13 shows the measurements when the foreground traffic is transmitted over 

TCP and background transmissions use UDP. As for the corresponding Gigabit case 

(Section 6.2.2.1), the idletime scheduler requires preemption intervals longer than the 

0 20 40 60 80 100
Foreground Intensity [%] 

0.5

1

1.5

2

2.5

3

3.5

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized FG TCP Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

0.5

1

1.5

2

2.5

3

3.5

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized BG UDP Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

0.5

1

1.5

2

2.5

3

3.5

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

1x  >2xNormalized FG TCP Latency

0 20 40 60 80 100
Foreground Intensity [%] 

0.5

1

1.5

2

2.5

3

3.5
Pr

ee
m

pt
io

n 
In

te
rv

al
 [m

s]

1x  >2xNormalized BG UDP Latency

2x RTT

RTT

Service 
Time

2x RTT

RTT

Service 
Time

 

Figure 6.13. Measured 100Mb/s Ethernet TCP/UDP throughput (top row) and latency (bottom row). 



 
191

RTT of 1.25ms for effective operation. Increasing the preemption interval over twice 

the RTT results in another, minor performance improvement. 

Figure 6.14 shows the next scenario, where both foreground and background traffic 

use TCP. This corresponds to the Gigabit case examined in Section 6.2.2.2. Again, 

with preemption intervals above the RTT, the idletime mechanism is more effective in 

0 20 40 60 80 100
Foreground Intensity [%] 

0.5

1

1.5

2

2.5

3

3.5

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

1x  >2xNormalized FG TCP Latency

0 20 40 60 80 100
Foreground Intensity [%] 

0.5

1

1.5

2

2.5

3

3.5
Pr

ee
m

pt
io

n 
In

te
rv

al
 [m

s]

1x  >5xNormalized BG TCP Latency

0 20 40 60 80 100
Foreground Intensity [%] 

0.5

1

1.5

2

2.5

3

3.5

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized FG TCP Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

0.5

1

1.5

2

2.5

3

3.5

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 100%Normalized BG TCP Throughput

2x RTT

RTT

Service 
Time

2x RTT

RTT

Service 
Time

 

Figure 6.14. Measured 100Mb/s Ethernet TCP/TCP throughput (top row) and latency (bottom row). 



 
192

isolating foreground traffic from the presence of idletime use. 

One difference to the previous case with UDP background traffic (Figure 6.13) is that 

raising the preemption interval past twice the RTT has no significant effect. 

As in the Gigabit scenarios presented in Section 6.2.2, the RTT influences the range of 

effective preemption intervals in the 100Mb/s LAN case. 

6.3.2 100Mb/s with 10ms Delay 

The results in the previous section have indicated that TCP’s RTT estimate influences 

the range of effective preemption interval lengths for a LAN link. This section 

modifies the previous setup. It uses Dummynet to simulate a 100Mb/s WAN link with 

10ms delay, as described at the beginning of Section 6.3. 

Figure 6.15 shows the first scenario, where TCP foreground traffic competes with 

UDP background traffic on the simulated WAN link. The estimated RTT of the 

foreground connections clearly affects the minimum effective preemption length. In 

the corresponding LAN case (Section 6.3.1, Figure 6.13) the idletime scheduler 

became effective with preemption intervals longer than the corresponding RTT of 

1.25ms in the LAN scenario. Here, in the WAN case with 10ms delay, the required 

preemption length for effective idletime scheduling is over 20-30ms. 

With a preemption interval less than 20-30ms, foreground throughput reaches only 

approximately 50% of the baseline, and the corresponding latencies range from over 



 
193

2x to 1.5x of the baseline. Likewise, with preemption intervals less than 20-30ms, the 

background throughput is high (70-90% of the baseline) and the corresponding 

latencies are very low (1-1.3x baseline). 

It is interesting to note that effective preemption lengths of 20-30ms are slightly longer 

than the simulated RTT of 20ms. Two factors may contribute to this effect. First, 

0 20 40 60 80 100
Foreground Intensity [%]  

0

10

20

30

40

50

60

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

 
 

0% 100%Normalized FG TCP Throughput

0 20 40 60 80 100
Foreground Intensity [%]  

0

10

20

30

40

50

60

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

 
 

0% 100%Normalized BG UDP Throughput

0 20 40 60 80 100
Foreground Intensity [%]  

0

10

20

30

40

50

60

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

 
 

1x  >2xNormalized FG TCP Latency

0 20 40 60 80 100
Foreground Intensity [%]  

0

10

20

30

40

50

60

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

 
 

1x  >2xNormalized BG UDP Latency

2x RTT

RTT

2x RTT

RTT

 

Figure 6.15. Measured 100Mb/s Ethernet TCP/UDP throughput (top row) and latency (bottom row) with 10ms 
delay. 



 
194

TCP’s RTT estimator conservative by design and over-estimates the RTT to avoid 

overloading the network. Second, the link is fully loaded during these measurements, 

because background transmissions are greedy. Additional queuing delays can therefore 

increase the apparent RTT.  

Figure 6.16 shows the scenario where both foreground and background transmissions 

use TCP. Again, the minimum preemption interval at which the idletime scheduler 

becomes effective lies between 20-30ms.  

One large difference between this scenario and the corresponding LAN case without 

additional delays (Section 6.3.1, Figure 6.14) is background throughput. In the LAN 

case, background throughput reached up to 50% under light foreground intensities, 

with preemption intervals longer than the RTT, and thus without affecting foreground 

transmissions. Here, background transmission stops almost completely as the 

preemption interval exceeds than the RTT. Additional experiments are required to 

investigate this phenomenon. One hypothesis is that TCP’s global timers synchronize 

transmission processing for different connections. This causes foreground and 

background packets to compete for transmission after a timer fires, and results in 

amplified background delays due to idletime scheduling. The decrease in background 

performance with preemption intervals shorter than the RTT, compared to the UDP 

scenario, would support this hypothesis. 



 
195

Another possibility is that these results are due to the network environment 

experienced by background TCP connections. Due to prioritizations, the network and 

end systems will drop background packets first during times of congestion. 

Furthermore, preemption intervals cause frequent stalls in both background data and 

acknowledgment streams. These stalls could force background connections into 

0 20 40 60 80 100
Foreground Intensity [%]

0

10

20

30

40

50

60

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

 
 

0% 100%Normalized FG TCP Throughput

0 20 40 60 80 100
Foreground Intensity [%]

0

10

20

30

40

50

60

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

 
 

0% 100%Normalized BG TCP Throughput

0 20 40 60 80 100
Foreground Intensity [%]

0

10

20

30

40

50

60

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

 
 

1x  >2xNormalized FG TCP Latency

0 20 40 60 80 100
Foreground Intensity [%]

0

10

20

30

40

50

60

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

 
 

1x  >10xNormalized BG TCP Latency

2x RTT

RTT

2x RTT

RTT

 

Figure 6.16. Measured 100Mb/s Ethernet TCP/TCP throughput (top row) and latency (bottom row) with 10ms 
delay. 



 
196

repeated slow-start as foreground load and preemption interval length increase. 

Section 7.1.4 discusses this in detail. 

Additional, detailed experiments are required to understand this behavior fully. 

However, because idletime scheduling isolates foreground traffic from the presence of 

background use, using TCP for background transmissions serves no purpose. 

Congestion-uncontrolled UDP traffic will optimize background throughput without 

decreasing foreground throughputs. 

The main purpose of the experiments presented in this section was to investigate a 

possible relationship between the RTT and the minimum required preemption interval 

for effective idletime scheduling. The measurements on both Gigabit and 100Mb/s 

LAN links have exhibited a significant foreground performance increase as 

preemption interval lengths exceeded TCP’s RTT estimate of 1.25ms. The 

measurements presented in this section for a simulated 100Mb/s WAN link with 10ms 

delay have confirmed this relationship. Additional measurements are required to 

investigate the behavior of the mechanism over different link speeds and delays, but 

similar behavior would be expected. 

6.4 Network Scheduler Discussion 

In the disk case discussed in Section 6.1, the ratio of foreground arrival rate to 

resource service time was such that the idletime scheduler had to preempt background 



 
197

use completely to prevent a significant decrease in foreground performance. This is 

not the case for network interfaces, where service times are approximately 0.05ms. 

In the Gigabit LAN scenarios (Section 6.2), the idletime scheduler is very effective. It 

sustains foreground throughputs higher than 90% of the baseline, with comparably 

low latencies. Furthermore, the scheduler utilizes available idle capacities for 

background load until foreground intensity reaches approximately 80%. At higher 

intensities, it preempts idletime use to protect foreground performance. 

The experiments illustrated other interesting points. First, as expected, foreground 

performance at low intensities (<10%) can become affected by the presence of 

idletime service, because the burst length at low intensities is short. Because idletime 

scheduling amortizes preemption cost over a foreground burst, this results in a higher 

per-request overhead, leading to an overall reduction in performance. Section 7.2.1 

will further examine this case. 

Second, the minimum preemption interval length when TCP is used to send 

foreground traffic (Sections 6.2.2 and 6.2.2.1) is approximately 1.25ms and therefore 

significantly higher than with UDP at 0.05ms. Because 1.25ms is the resolution of 

TCP’s RTT estimator, a possible correlation between estimated RTT and effective 

preemption delay lengths was investigated in Section 6.3. The measurements over a 

simulated WAN link with 10ms delay have confirmed that effective preemption 

interval lengths depend on the estimated RTT of the network link when TCP is used to 



 
198

transmit foreground traffic. Additional experiments are required to determine the exact 

nature of this relation. 

6.5 Experimental Limitations 

The experiments presented in this chapter investigated the behavior of the idletime 

schedulers in several interesting scenarios. However, further experiments that evaluate 

the mechanism in additional scenarios will aid in better understanding the benefits and 

limitations of the proposed scheduler. 

First, all network and disk scenarios use unlimited idletime workloads that strive to 

utilize all available capacity. This models the worst-case scenario for an idletime 

scheduler, because many foreground requests will incur preemption costs, due to 

ongoing idletime use. During this initial evaluation of the idletime scheduler, focus on 

worst-case behavior allowed investigation of the feasibility of idletime scheduling 

with preemption intervals.  

The resulting measured performances consequently are lower and upper bounds for 

foreground and idletime processing, respectively. With more realistic, limited idletime 

workloads, foreground performance can increase, due to preemption cost reductions 

during periods of idletime inactivity. 

Another limitation was the use of synthetic foreground workloads. For this initial set 

of experiments, measuring a wide range of foreground loads was important, to arrive 



 
199

at an initial evaluation of the overall behavior of the idletime mechanism. In the 

future, subjecting the scheduler to actual user-generated workloads will allow 

investigation of the concrete, application-perceived impact on foreground 

performance. 

In addition, the network experiments in Sections 6.2 and 6.3 only investigate a single, 

directly connected network topology. Some experiments also vary the propagation 

delay of that link. Experiments with a static topology allow direct performance 

comparisons between different combinations of transport protocols. However, an 

important remaining question is behavior of the idletime scheduler in Internet-

spanning end-to-end scenarios. 

Implementing the proposed scheduler in a network simulator, such as ns2 

[BRESLAU2000], can aid in these evaluations. The ns2 simulator, and its nam 

visualization system, allows realistic simulation of wide-area Internet paths. It 

includes standards-compliant implementations of the Internet protocol suite, and can 

generate realistic traffic patterns that model aggregate user traffic. 

6.6 Summary 

This chapter evaluated the performance of the prototype implementation described in 

Chapter 5 experimentally. It has investigated the behavior of the idletime scheduler for 

two resources with different characteristics: disk drives and network interfaces. For 



 
200

both types of resources, multiple experiments measured the achieved foreground and 

background throughputs and latencies over a range of load patterns and preemption 

interval lengths. 

The idletime disk scheduler effectively protected foreground performance under a 

random-access workload by frequently preempting background use due to timing 

granularity. With a sequential-access workload, the speculative read-aheads – issued 

by the system to increase performance – almost completely prevented idletime use. A 

future version of the disk scheduler should better incorporate the aggressive read-

ahead load, and still allow some idletime use. 

The idletime network scheduler performed well under both UDP and TCP workloads, 

and successfully maintained high foreground performance while supporting idletime. 

Idletime use continued up to foreground intensities of 80%. At higher intensities, the 

scheduler started to stall transmission of background traffic, to avoid decreasing 

foreground performance under heavy load. One interesting observation with TCP 

senders was that the required minimal preemption interval corresponds to the round-

trip time instead of the resource service time. Additional experiments are required to 

investigate this correlation further. 



 
201

7. Discussion 

The previous chapter presented an experimental investigation of the performance of 

the idletime scheduler under a variety of workloads. This chapter will discuss the 

conclusions of this evaluation and highlight the main results and issues, such as 

differences between the predicted and measured scheduler behavior. The second part 

of this chapter describes proposed future extensions that can improve certain aspects 

of idletime scheduling, such as automatically adapting the preemption interval length 

to the observed foreground workload. 

7.1 Overview 

The results of the experimental in Chapter 6 confirm that an idletime scheduler based 

on preemption intervals is generally effective in reducing the impact on foreground 

performance caused by idletime use. Foreground performance decreases less than 10-

15% under many worst-case idletime workloads. However, the experiments identified 

several issues that the theoretical analysis of the mechanism did not predict. The 

remainder of this section will discuss these issues. 

The first part of this section will compare the measurement results to the predicted 

performance based on the quantitative analysis of Chapter 4. Despite the simple nature 

of the model, its performance predictions conformed to the measured behavior with an 

overall error below 15%. The quantitative analysis illustrated how changing the length 

of the preemption interval allows trading a reduction in foreground performance 



 
202

against increased idletime performance, or vice versa. Section 7.1.2 discusses 

observations of these effects during the experiments. 

One limitation of the quantitative analysis is the assumption of simple workloads, such 

as fixed-rate UDP traffic or disk accesses. It cannot predict performances for more 

complex workloads, such as TCP flows. It consequently failed to model the effects 

observed during some experiments in Chapter 6, where foreground TCP flows 

required preemption intervals longer than the RTT to reach acceptable performance. 

This result, further discussed in Section 7.1.3, does not invalidate the overall 

mechanism. For such flows, the idletime scheduler still maintains foreground 

performances comparable to the baseline with preemption interval lengths longer than 

the RTT. 

Background TCP flows can suffer from a different problem. The TCP protocol 

operates well under stable or slowly changing network conditions, and starts to 

perform poorly when network conditions fluctuate on smaller timescales. The network 

environment experienced by background traffic features rapidly changing bandwidths 

and propagation delays. Consequently, TCP background throughput can be poor. 

Section 7.1.4 investigates these interactions in detail. Because the idletime scheduler 

will protect foreground flows from the presence of arbitrary idletime traffic, a more 

aggressive transport protocol, such as UDP, improves background performance 

without affecting foreground traffic. 



 
203

The measured performances of the sequential disk benchmark in Section 6.1.2 were 

also different from the predictions based on the quantitative model. Kernel-generated 

read-aheads multiplied the application-generated foreground load, and caused an 

almost complete stop of idletime processing. Section 7.1.5 discusses this finding, and 

proposes a modified read-ahead mechanism to allow idletime use while maintaining 

high foreground performance. 

7.1.1 Measured vs. Predicted Performance 

Section 4.4 presented a simple quantitative analysis of the model of idletime 

processing formally defined earlier in Chapter 4. This quantitative analysis predicts 

the global behavior of the idletime mechanism for a given resource and workload. 

This section will compare the predicted performances for the network (Section 4.4.3) 

and disk (Section 4.4.2) scenarios against the measured performances observed during 

the experimental evaluation in Chapter 6. 

Due to the simplifying assumptions during the analysis, the resulting predictor is not 

expected to describe the performance at very high accuracy. Instead, its purpose is to 

estimate the global behavior of the mechanism over a wide range of workloads and 

resources. The absolute errors between predictions and experimentally measured 

results are less than 15% in most cases, indicating that the prototype implementation 

conforms to the expected behavior. The next sections compare predictions against 

measurements for two scenarios in detail. 



 
204

7.1.1.1 Gigabit LAN 

Figure 4.21 in Section 4.4.3 showed the predicted foreground and background 

throughputs for a local-area Gigabit link. The quantitative analysis in Section 4.4 is 

simple, and cannot express the behavior of congestion-controlled transport protocols 

such as TCP. This discussion will hence focus on the scenario where both the 

foreground and background sender use UDP. The modeled scenario corresponds to the 

experimental setup measured in Section 6.2.1.1. The top graphs in Figure 6.9 show the 

observed throughputs during the experiment.  

To compare the predictions to the measurements, Figure 7.1 shows the absolute 

difference between the two sets of numbers, displayed as a contour graph. Note that 

the shades of the contours are scaled; black areas correspond to a 50% difference 

between the prediction and the measured performance. 

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 50%
Network Prediction Error FG Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

1

2

3

4
Pr

ee
m

pt
io

n 
In

te
rv

al
 [m

s]

0% 50%
Network Prediction Error BGThroughput

Service 
Time

 

Figure 7.1. Relative performance prediction error for the network case. 



 
205

Figure 7.1 illustrates that the simple prediction function derived from the model in 

Section 4.3.1 is effective: maximum overall prediction error is less than 10%. 

Furthermore, the regions where the predictor performs worst are those where the 

idletime scheduler itself is ineffective. This occurs mostly at low intensities less than 

10%, or when the preemption interval is shorter than the service time (here, 0.05ms). 

Outside these areas, the performance prediction is more accurate with only a 1-5% 

error for both foreground and background throughputs. 

7.1.1.2 Disk Drive 

Section 4.3.1 also predicted performance for a disk resource under a random-access 

workload. The experimental evaluation measured this case in Section 6.1.1 and 

showed the measured throughput in the top graphs in Figure 6.4. As in the network 

performance comparison discussed in the previous section, Figure 7.2 shows the 

prediction error for this scenario. As in above in Figure 7.1, black regions in Figure 7.2 

0 20 40 60 80 100
Foreground Intensity [%] 

0

20

40

60

80

100

120

140

Pr
ee

m
pt

io
n 

In
te

rv
al

 [m
s]

0% 50%Disk Prediction Error FG Throughput

0 20 40 60 80 100
Foreground Intensity [%] 

0

20

40

60

80

100

120

140
Pr

ee
m

pt
io

n 
In

te
rv

al
 [m

s]

0% 50%Disk Prediction Error BGThroughput

Service 
Time

Max. FG 
Inter- 

Arrival 
Time

 

Figure 7.2. Relative performance prediction error for the disk case. 



 
206

correspond to a 50% prediction error.  

As in the Gigabit LAN case, the predictor is ineffective in predicting disk throughputs 

when the preemption interval is shorter than the service time of 20ms. It performs 

worst at light intensities and short preemption interval lengths, where the prediction 

error can reach 40%. The cause of this high error percentage again lies in the simple 

model underlying the analysis. 

With preemption intervals longer than the service time, the performance prediction is 

much more accurate. It predicts performance with overall errors less than 15%. For 

light foreground intensities less than 20%, the prediction error can increase by 5%. 

In the Gigabit network performance comparison discussed in the previous section, the 

predictor achieved identical accuracies for both foreground and background 

throughputs. However, the performance predictor for the disk resource shown in 

Figure 7.2 predicts background throughput more accurately than foreground 

throughput. The foreground prediction error can reach 15-20%, while background 

errors remains less than 10% overall. This may indicate that factors other than the 

available bandwidth affect foreground performance. One factor not included in the 

simple quantitative analysis is the variability of disk access costs due to disk head 

location. This omission may affect the accuracy of the predictor. 



 
207

A detailed comparison of the measured results against the quantitative model finds that 

the model does not accurately describe observed performance in borderline cases. For 

example, the model assumes a linear decay of background performance with 

increasing preemption interval lengths. A detailed analysis of the measured results 

indicated that background performance instead exhibits a logistic decay model as 

preemption interval lengths increase, especially at high foreground loads. This causes 

the pronounced diagonal area of increased error rates visible in the left image in 

Figure 7.2. 

Overall, however, the quantitative analysis is successful in predicting global behavior 

of the idletime scheduler for different resources and workloads with acceptable error 

rates, and serves as an indicator of the correctness of the implementation. 

7.1.2 Effects of Preemption Interval Length 

The analysis of the idletime scheduler in Chapter 4 identified upper and lower bounds 

on useful preemption interval lengths. The lower bound is resource-dependent, such as 

the service time or link RTT. The upper bound depends on the workload, and 

corresponds to the inter-arrival time of foreground requests. The length of the 

preemption interval allows tuning the scheduler’s aggressiveness in utilizing idle 

capacity. This property allows adaptation of the mechanism to various resources, 

workloads, and user policies on acceptable performance impacts. One direction of 

future research is mechanisms to choose effective preemption interval lengths 



 
208

automatically, based on workload and user policy. Section 7.2 discusses such 

approaches. 

Idletime scheduling amortizes preemption delays due to idletime use over bursts of 

foreground requests. Section 4.3.1 defined a foreground burst as a sequence of 

foreground requests whose starting times lie within the respective predecessor’s 

preemption interval. The idletime scheduler is less effective when these foreground 

bursts are short. Each burst will at most incur a single preemption. With short bursts, 

this results in higher reduction of foreground performance. The disk benchmarks in 

Section 6.1 illustrate this case. Service times of 20ms with foreground arrival rates in 

the same order of magnitude resulted in short foreground bursts, causing less effective 

idletime scheduling that did not fully prevent foreground delays.  

Short foreground burst lengths also appear when the intensity of the foreground 

requests is low, as discussed in Section 4.3.1. Consequently, the scheduler cannot 

completely isolate low-rate foreground workloads from concurrent idletime use. This 

may be acceptable in some scenarios, because a very light foreground load often 

indicates that full performance of a resource is not required. In cases where this delay 

is not acceptable, a longer preemption interval will create longer foreground bursts 

that reduce overhead at the cost of a substantial reduction in background performance. 

When performance of low-rate foreground workloads is paramount, a preemption 

interval longer than the inter-arrival time will halt idletime processing, and guarantee 

foreground performance comparable to the baseline scenario. 



 
209

Thus, the inter-arrival time between foreground requests acts as an upper bound for 

useful preemption interval lengths. With preemption intervals longer than the 

foreground inter-arrival time, idletime use stops completely, and foreground 

processing occurs as if no idletime scheduling was present. The disk experiments in 

Section 6.1 illustrate this behavior. When preemption interval lengths exceed the 

foreground inter-arrival time of 100ms, a new preemption interval begins before the 

active one expires, and idletime use halts. This desired behavior protects foreground 

performance at high arrival rates, where even a moderate amount of idletime use can 

greatly decrease foreground performance.  

Section 4.3.1 predicted that the lower bound for useful preemption intervals would be 

the service time of the resource. Such preemption intervals expire while their 

corresponding foreground request is still active, and consequently cannot control 

idletime processing. With preemption intervals shorter than the lower bound, the 

idletime scheduler degrades into a simple priority queue. The experiments with 

foreground UDP traffic in Chapter 6 have illustrated this property.  

In another set of experiments that used TCP to transmit foreground traffic, the service 

time of the network interface was not a useful lower bound for preemption interval 

lengths. The following section will discuss this effect in detail. 



 
210

7.1.3 Impact of the RTT on Foreground TCP 

For UDP foreground traffic, the service time of the network stack acted as a lower 

bound for effective preemption lengths. Section 6.2.1 illustrates this behavior. Short 

preemption intervals of less than 0.05ms are sufficient in protecting UDP foreground 

traffic from the presence of TCP or UDP background transmissions. 

However, foreground traffic using TCP for transmission required significantly longer 

preemption intervals to prevent reduced performance due to concurrent idletime 

traffic. Sections 6.2.2 and 6.3 presented evidence that effective idletime scheduling of 

TCP foreground traffic requires preemption interval lengths that exceed the RTT of the 

network link. With TCP foreground traffic, preemption intervals significantly shorter 

than TCP’s RTT estimate – which has a resolution of 1.25ms on the benchmark 

platforms – are ineffective. The experiments over a simulated WAN link with 10ms 

delay in Section 6.3 illustrate this behavior. TCP foreground traffic in this scenario 

required preemption intervals longer than 20-30ms to prevent performance 

degradation. 

The design of the idletime mechanism in Chapter 4 is independent of specific 

foreground arrival patterns, and its analysis did not predict the effect of TCP’s RTT 

estimate on effective preemption interval ranges. A future investigation should validate 

these findings, and examine possible explanations for this TCP behavior. One 

hypothesis is that TCP’s timers synchronize with the timers that control idletime 

transmissions, and therefore create a scenario where foreground TCP traffic incurs 



 
211

frequent preemption costs, lowering performance. Another hypothesis is that timers in 

the Dummynet system, which simulated the WAN link in Section 6.3, may interfere 

with timers used to manage preemption intervals. 

However, TCP’s apparent dependence on longer preemption intervals does not 

invalidate the usefulness of the overall idletime mechanism. Preemption intervals 

longer than the RTT estimate successfully isolate foreground performance from the 

presence of idletime use. On the other hand, they do prevent the utilization of shorter, 

transient idle capacities, and will thus decrease idletime performance.  

7.1.4 Congestion Control in the Background 

Applying the idletime scheduler to networking, as described in Section 5.4, creates 

two distinct service environments. Foreground traffic continues to experience the 

traditional best effort Internet service model. Background traffic, however, is subject 

to preferential drops under congestion and experiences additional delays due to 

preemption intervals and low-priority queuing. It consequently experiences a more 

volatile overall network environment, where properties such as available bandwidth 

and propagation delays change in response to foreground load. These changes happen 

on timescales that are faster than for foreground traffic, and can affect the performance 

of transport protocols that transmit in the background. 

When TCP transmits in the background, it can fail to reach performance that is 

comparable to that achieved at foreground priority. Queuing of idletime traffic during 



 
212

preemption intervals can cause ACK compression [MOGUL1992], fluctuations in 

foreground traffic can rapidly change the available capacity for background use, and 

background delays through preemption intervals can inflate TCP’s RTT estimate.  

All these effects can decrease TCP’s effectiveness. TCP operates by carefully 

monitoring the path characteristics, and slowly increasing its sending rate when it 

detects available capacity – or quickly dropping the sending rate in times of detected 

congestion. This mechanism is very effective when the path characteristics do not 

change on fast timescales. This is not true when TCP uses idletime network capacity 

for transmission, as previously described. Section 6.3.2 illustrates this limitation. 

During the experiments over a 100Mb/s link with 10ms delay, TCP background 

throughput is low, and can even become completely stalled at longer preemption 

intervals. 

One approach to mitigating some of these effects relaxes the strict prioritization 

between foreground and background service [SHALUNOV2001]. Instead of completely 

stopping background traffic, this approach reserves a small fraction of the bandwidth 

for idletime use at all times. A similar approach that does not require reservations 

would simply transmit TCP packets that carry critical state information in the 

foreground. Both these approaches allow background TCP flows to maintain their 

ACK clocks during heavy foreground load, and can prevent frequent slow-starts that 

reduce performance. However, even with these improvements, TCP performance will 

suffer from rapid changes in available background bandwidth and RTT. Proposed 



 
213

modifications to TCP, such as TCP Santa Cruz [PARSA1999], may alleviate some of 

these shortcomings, and could improve TCP performance in idletime capacity. 

A transport protocol such as UDP, which is not congestion-controlled, does not suffer 

from such performance issues in the background. Because the idletime scheduler 

protects foreground traffic from the presence of high-rate background flows, using an 

aggressive transport protocol for background traffic is acceptable. Protocols that are 

more aggressive will react to changes in the network faster, and can thus increase 

background performance. 

The experiments in Sections 6.2 and 6.3 illustrated that the idletime scheduler limits 

the impact of aggressive UDP background traffic, given sufficient preemption interval 

lengths. This allows maximizing background throughput without the possibility of 

decreasing foreground performance. 

7.1.5 Effects of Speculative Optimizations 

One unique characteristic of the disk subsystem is read-ahead optimization for 

sequential operations. Section 2.3.5 discussed why disabling such speculative 

optimization (including caching) during idletime use is required to limit the impact on 

foreground processing. However, disabling optimizations can lead to low idletime 

performance, even when the resource is only very lightly loaded with application-

generated foreground requests. 



 
214

The disk measurements in Section 6.1.2 also illustrated the opposite behavior. When a 

foreground process issues sequential reads, the disk subsystem aggressively issues 

additional, speculative read-aheads that the scheduler serves at foreground priority. 

This high frequency of read-aheads effectively stalls idletime use. 

Additionally, speculative read-aheads generated for one foreground process may delay 

concurrent, application-issued disk operations of another foreground request. In some 

sense, read-aheads are less important that application-issued requests, because it is 

unknown whether their responses will benefit future processing.  

Using idletime capacity for speculative read-aheads, as proposed in Section 2.3.5, 

addresses both these issues. They will execute concurrently with other idletime disk 

requests instead of stalling them, and cause application-issued requests to receive 

better service. A future version of the disk scheduler should investigate the 

performance effects of idletime read-aheads in detail. 

7.2 Future Work 

Although the experiments in Chapter 6 confirmed the general effectiveness of the 

present idletime scheduler, specific aspects, such as setting the preemption interval, or 

supporting advanced performance policies, can be improved. The current mechanism 

strives to minimize foreground performance decreases whenever possible. However, 

specific scenarios may tolerate a fixed decrease in foreground performance, and would 



 
215

benefit from the corresponding increased idletime throughput. Section 7.2.1 discusses 

how a modification of the current state machine underlying the idletime scheduler can 

support such advanced policies. 

A second direction for future research is mechanisms to choose effective preemption 

interval lengths automatically, depending on the present workload and user 

performance policy. Section 7.2.2 discusses possible approaches for such mechanisms, 

based on the beginnings of a framework already present in the current prototype 

implementation.  

Finally, the idletime mechanism designed in Chapter 4 supports idletime use of 

spatially shared storage resources. The initial prototype implementation was limited to 

disk and network bandwidth, which are both temporally shared resources. Future 

extensions to the idletime implementation should include support for spatially shared 

resources, to validate the effectiveness of idletime scheduling with preemption 

intervals in this case. Idletime support for spatially shared resources will also enable 

research into speculative of idle resource capacity, as briefly outlined in Chapter 4. 

Section 4.2.4 discusses the required extensions to manage and merge speculative state 

kept maintained in storage capacity of spatially shared resources. 

7.2.1 Idletime Scheduler Extensions 

The implementation of the idletime scheduler described Chapter 5 bases its scheduling 

decisions strictly on its current state, such as its queue contents and preemption 



 
216

interval timers. It does not accumulate usage history or track usage statistics, and past 

scheduling decisions have no influence on the present.  

Consider the variant identified for implementation and evaluation in Chapter 5, with 

the state machine shown in Figure 7.3. It will always start a preemption interval by 

entering state P when leaving the F state, both when the resource becomes idle (event 

i) or when a background request is at the head of the queue (event b). Usage history – 

or any other external information – does not influence this scheduling decision. 

This reliance on current state alone significantly simplifies operation and analysis of 

the idletime mechanism. However, it also eliminates possible optimizations of the 

idletime mechanism that could improve behavior. For example, in some scenarios, the 

user’s foreground delay policy may allow for a specific, fixed decrease of aggregate 

foreground performance. Under such a policy, the idletime scheduler could skip the 

preemption interval in a controlled fashion when switching from foreground to 

idletime use. This can increase idletime performance. 

Consider an example policy that permits a 10% reduction of foreground performance. 

Whenever the resource has served ten foreground requests without incurring a 

I

F BP

f

f
ff

i

tb/b ∨ i

b

b

i

 

Figure 7.3. Variant of the idletime scheduler chosen for implementation. 



 
217

preemption delay, it can immediately switch to idletime use. Even if it must 

immediately preempt the idletime request for a newly arriving foreground request, the 

aggregate foreground performance will still exceed 90%. It will have served eleven 

foreground requests incurring one preemption delay (of at most single service time). In 

general, the ratio between the number of serviced foreground requests that did not 

incur preemptions and the total number of preemptions bounds foreground 

performance. 

Figure 7.4 shows the state diagram that would support such idletime scheduling. The 

thick, dotted arcs denote that this scheduler may either transition F I→  directly on 

event b or i, or take the traditional transition F P→ , as the strict variant in Figure 7.3 

does. The choice of when to skip the preemption interval (taking F I→ ) and when to 

incur it (taking F P→ ) supports different scheduler variants that may involve external 

state, such as event history, in their scheduling decision. The traditional state machine 

shown in Figure 7.3 cannot support such relaxed scheduling decisions. 

The length of the event history acts as a moving averaging period. In the previous 

example, every ten foreground requests serviced without preemption cost count as a 

I

F BP

f

f
ff

i

t
b/b ∨ i

b

b

i

 

Figure 7.4. Idletime scheduler with relaxed transition into preemption intervals. 



 
218

“credit” for skipping a preemption interval, while maintaining the required minimum 

performance. Suppose the event history records one hundred foreground requests 

served with five preemptions. The resource may still skip the next five preemption 

intervals while maintaining 90% aggregate foreground performance.  

Long event histories potentially allow the relaxed scheduler to accumulate a large 

number of credits to skip preemption intervals. When the scheduler uses these credits 

in a short period, it may skip many preemption intervals, and cause transient 

foreground performance to decrease past the permitted reduction. For example, with 

five credits used back to back, the transient average foreground performance can dip 

as low as 50%, if all five accelerated idletime uses will incur preemptions. It may be 

useful to investigate leaky bucket schemes that further limit the number of saved skip 

credits, and the rate at which they may be spent. 

The idea of accumulating and spending credits is similar to proportional-share 

schedulers discussed in Section 8.4 [WALDSPURGER1995]. Proportional-share 

schedulers allocate different fractions of resource capacity based on a weight 

distribution. In the context of the proposed idletime scheduler, such a mechanism 

would not manage resource use directly, but instead control the overheads of 

bypassing preemption intervals.  

The relaxed observance of preemption intervals presented in this section can improve 

idletime performance, at a constant decrease in foreground performance. The details of 



 
219

such idletime variants, including aggregation lengths, restrictions on spending skip 

credits, and the interaction between skipping preemption intervals and preemption 

interval lengths, are an area for future research. 

7.2.2 Automatic Preemption Interval Tuning 

The current idletime scheduler prototype requires manual specification of an 

appropriate preemption interval for a given resource and workload. One key 

improvement is a mechanism that automatically adapts the preemption interval based 

on observed resource and workload characteristics. 

Effective idletime use requires amortization of preemption cost over a burst of 

foreground requests, which by definition incur at most a single preemption cost, and as 

a result bound idletime overhead. The idletime scheduler could measure burst and 

delay statistics, and thus automatically adjust the preemption interval length. 

The prototype implementation described in Chapter 5 includes the beginnings of a 

framework to support such auto-tuning mechanisms. For each of the four possible 

states of the resource (I, F, B and P, see Figure 7.5), the scheduler maintains event 

I

F BP

f

f
ff

i

tb/b ∨ i

b

b

i

 

Figure 7.5. Variant of the idletime scheduler chosen for implementation. 



 
220

counters for the f, b, t and i events. For example, whenever a new foreground request 

appears (event f) during a preemption interval (state P), the scheduler increases the 

P[f] counter by one. 

A mechanism to adapt the preemption interval automatically can monitor these 

counters, to increase or decrease the interval length accordingly. For example, a 

rapidly increasing B[f] counter indicates that many idletime preemptions delayed 

foreground requests, and the preemption interval should be increased. Likewise, a 

steady increase in the P[f] and I[f] counters could allow a reduction of the preemption 

interval, to increase background throughput. 

One interesting direction of future research is whether a TCP-like windowing 

mechanism can effectively manage preemption interval lengths based on these 

counters. For TCP, a segment loss serves as an indicator to decrease the congestion 

window. Similarly, an increase in B[f] can serve as an indicator for increasing the 

preemption interval length. In the absence of congestion losses, TCP slowly increases 

the window. The preemption interval could shrink slowly over time in the same way.  

7.2.3 Spatially Shared Resources 

Chapter 4 discussed the difference between temporally and spatially shared resources. 

Both prototype implementations in Chapter 5 focused on temporally shared resources. 



 
221

Idletime use of spatially shared storage resources requires additional mechanisms, due 

to their inherent persistence. Traditionally, when a process obtains storage capacity, it 

is free to use it at any time thereafter. The kernel does not withdraw that storage 

capacity until the process explicitly returns it. This behavior remains unchanged for 

foreground use of capacity resources under idletime scheduling, but background use of 

idle capacity follows a different service model. 

As described in Section 4.2, the operating system must reclaim unused storage 

allocated to idletime use when it is required to satisfy a newly arriving foreground 

request. This results in a service model where idletime storage can disappear at any 

time. Applications and services that wish to use idle capacity for storage must 

therefore gracefully adapt to these events.  

Many existing applications may not execute under this service model for idletime 

storage. Furthermore, new operating system extensions must maintain the consistency 

of the overall system in the presence of preempted storage use. Finally, even with 

modified applications adapted to the service model of idletime storage, the operating 

system must provide further mechanisms to merge isolated idletime data into the 

regular, foreground state. Without this merge operation, idletime data could never 

become visible to regular processing, greatly reducing the usefulness of idletime 

storage. 



 
222

Stateful resources, such as disk drives, are one challenge for idletime use of spatially 

shared capacity. File systems exploit locality by laying out data and metadata to 

reducing disk arm movement, increasing performance. A naïve implementation of an 

idletime mechanism could interfere with the layout of foreground data, and reduce 

performance. Section 2.3.6 discussed how idletime schedulers must prevent such side 

effects of background use. The presence of idletime use must not affect the layout 

policy of the foreground file system. 

Another benefit of providing these additional mechanisms supporting transparent use 

of idle storage capacity is enabling speculative use of idletime capacity. The ability to 

store large amounts of data speculatively, without the possibility of interfering with 

regular, higher-priority storage requirements, allows straightforward support for 

aggressive optimizations such as caching and buffering. Combined with idletime use 

of temporally shared resources, such as the CPU or the network interface, these 

mechanisms provide an integrated framework for idletime processing. Successful 

speculations become visible to other processes in the system through the integrated, 

transparent merge operation supported by spatially shared resources.  

7.2.4 Idletime Networking Improvements 

Another area of improvements is the idletime network prototype. An earlier, 

experimental version of the idletime scheduler extended ALTQ to support different 

queuing strategies for the IP inbound queue [EGGERT2001A]. At the time, experimental 

evidence showed that inbound scheduling only offered minimal performance 



 
223

improvements. Thus, the idletime inbound queuing code was not ported to the newer 

ALTQ release extended for idletime scheduling as described in Chapter 5. 

However, the earlier idletime variant did not yet use preemption intervals. Preemption 

intervals during inbound network processing will delay delivery of background IP 

packets to higher layers, such as transport protocols and applications. Preemption 

intervals during inbound processing could therefore further reduce the impact on 

foreground traffic. Additional experiments are required to investigate the effects of 

idletime inbound network scheduling. 

Another possible idletime networking improvement applies to idletime use of the TCP 

protocol. The current idletime mechanism starts a preemption interval whenever an 

outbound TCP segment enters the network driver. However, TCP is a bidirectional 

protocol based on a stream of receiver acknowledgements for pacing transmissions. 

Starting preemption intervals upon the receipt of such an acknowledgment – in 

addition to scheduling them when sending data segments – may further enhance 

foreground TCP performance under idletime scheduling. 

7.3 Summary 

This chapter discussed the overall results of the experimental evaluation. It compared 

the predicted performances based on the quantitative analysis from Chapter 4 against 



 
224

the measured behavior from Chapter 6, and found that the simple performance 

predictor is often accurate to within 15% of the measured results. 

The first part of this chapter discussed further cases where the predicted and measured 

scheduler behavior was similar. Examples include shielding foreground performances 

from the presence of idletime use, and the existence of upper and lower bounds for 

effective preemption interval ranges. It also analyzed cases where the predicted and 

measured behavior differed, such as interactions between TCP’s congestion control 

mechanisms and the service model for idletime network transmissions. 

A latter part of this chapter focused on directions for future research. One proposed 

improvement is a mechanism that automatically identifies appropriate preemption 

intervals for a given resource by observing its current workload. Another direction for 

future research is variants of the mechanism that can guarantee fixed reductions in 

foreground performance that may also increase idletime performance. Other possible 

extensions include prototype implementations of the scheduler for spatially shared 

resources. 



 
225

8. Related Work 

Related work falls into several broad categories. First, systems that prioritize resource 

use, such as hard and soft realtime systems. The second category comprises of 

idletime execution systems, including systems for process and data migration.. A third 

related area is mechanisms for maintaining state consistency, such as for distributed 

database systems. Finally, a fourth area is priority schemes proposed for specific 

resources or applications. The remainder of this section contrasts and compares these 

systems with the idletime scheduler. 

8.1 Realtime Systems 

In traditional computer systems, the correctness of the computation depends on 

producing the correct result for any given input. In a realtime system, correctness also 

depends on the result timing. Violating the timing constraints (deadlines) of a 

computation results in a critical failure, even if the logical result is accurate. 

Systems that treat deadline violations as critical errors equivalent to a total system 

failure are commonly referred to as hard realtime systems. Another class of realtime 

systems supports soft realtime processing. They have relaxed timing constraints, and 

treat missed deadlines as undesirable, but not catastrophic. For both hard and soft 

realtime systems, the construction of an execution schedule that meets the deadlines of 

all tasks is critically important.  



 
226

The spectrum of existing realtime systems – from hard realtime to soft “multimedia” 

realtime – is vast. The following sections will describe selected examples, and 

compare them to the idletime scheduler. 

8.1.1 Examples 

The Spring kernel [STANKOVIC1991] supports realtime execution on multiprocessor 

machines, and guarantees absolute predictability based on worst-case execution times. 

One processor of the system is dedicated to execution of the system kernel; the rest are 

available to execute user processes. One unique feature of Spring is its planning-based 

approach to resource scheduling. It eliminates blocking from the system, but depends 

on a detailed description of the resource use of all application programs. Spring offers 

predictable memory accesses by preloading and locking pages into physical memory, 

and by saving and restoring the translation look-aside buffer during context switches. 

(A similar technique for traditional systems is also effective [BALA1994]). 

Nemesis [LESLIE1996] is a vertically structured operating system, where a microkernel 

implements only minimal task switching functionality. Shared libraries provide the 

bulk of in-kernel services of traditional operating systems at the application level. 

Thus, most processing on behalf of user processes is subject to scheduling by the 

microkernel. This allows accurate accounting of all computation. Traditional operating 

systems often cannot support precise accounting, and fail to charge internal processing 

to the process on which behalf it occurs. 



 
227

Unlike Spring, Nemesis does not support hard realtime processing and does not require 

processes to specify their resource requirements in advance. Instead, Nemesis focuses 

on providing a consistent quality-of-service environment for multimedia (soft 

realtime) applications through a QoS manager. It notifies applications of changes to 

the service allocation, and expects them to adapt. Among other things, it signals to 

applications whether an increase in their resource share is due to a (temporary) 

increase in idle capacity, or to an actual change in the service allocation. Thus, 

Nemesis supports some notion of processing with idle capacity. 

Eclipse/BSD [BRUNO1998][BRUNO1999] is similar to Nemesis in that it focuses on 

providing soft realtime service targeted at multimedia applications. Unlike the former, 

it requires explicit resource reservations through hierarchical CPU, disk, and network 

schedulers. 

Realtime Mach [TOKUDA1990] is a microkernel-based operating system similar to 

Eclipse/BSD, but with support for hard realtime processes. Again, applications 

explicitly notify the system of their resource requirements through reservations. 

AQUA [LAKSHMAN1998] is a kernel-level framework that allows cooperating 

processes to negotiate their CPU and network requirements with the kernel 

dynamically. If a resource becomes congested, AQUA notifies affected processes to 

allow service adaptation. 



 
228

Omega [NAHRSTEDT1996] is an end system framework that supports soft realtime 

scheduling of CPU, memory and network I/O to provide end-to-end quality-of-service. 

Omega is similar to AQUA; processes dynamically negotiate their resource 

requirements with the system. 

Scout [MOSBERGER1996] is a communication-oriented operating system based on the 

abstraction of data paths. Scout allocates threads to active paths according to a variety 

of schedulers, to vary the service model of the system. Idletime execution in Scout 

would require the addition of idletime paths combined with a thread scheduler 

supporting two service classes. 

8.1.2 Discussion 

All the realtime systems mentioned in the previous section differ in one or more of the 

following characteristics from a traditional, general-purpose operating system: 

predictability, resource requirement specifications, and admission control. 

One difference is predictability, which requires time bounds on all resource operations 

and scheduling overheads. Without such bounds, guarantees for processing deadlines 

become impossible. Narrow bounds are desirable for higher system utilization. 

Defining time bounds on operations is difficult and usually hardware dependent – for 

example, the maximum time of a disk read operation depends on the disk drive model. 



 
229

Predictability is not required for idletime use as defined in Chapter 4, although it 

might lower some preemption costs. With a known service time for a request, a 

scheduler may let an idletime request finish instead of preempting it when a regular 

request arrives. If the time-to finish of the idletime request is less than the preemption 

cost, this might decrease interference with regular use. 

A second difference between regular and realtime systems is resource requirement 

specifications. Processes must disclose their future resource use to the system. In the 

basic case of a dedicated system, a programmer statically verifies that the system can 

satisfy all resource requirements of the various processes, and compiles a fixed 

schedule controlling resource use. Naturally, such a system will not support dynamic 

process creation, and is too limited for general-purpose use. More advanced realtime 

systems allow processes to disclose their planned resource use and deadlines at run-

time. Such systems can automatically generate resource schedules based on these 

reservations. In both cases (explicit or automatic schedule generation), the workload of 

the system must be periodic. The resource requirements of dynamic workloads are 

difficult to predict, and their worst-case resource use may be unbounded. 

The idletime scheduling mechanism proposed in this work does not mandate resource 

requirement specifications. If idletime tasks choose to specify their resource 

requirements, the system could optimize performance by not allocating available 

capacity to tasks that depend on fully loaded resources. However, this is an optional 

optimization of the idletime mechanism, and not a required feature. 



 
230

When a new realtime process starts, the system dynamically verifies its execution 

feasibility, and rejects the process if execution would over-commit its resources. This 

admission control is the third characteristic of a realtime system. A general-purpose 

operating system does not need to perform admission control, because is neither offers 

resource reservations nor fixed deadlines. Dedicated realtime systems do not require 

admission control, because their workloads are static, with externally proven deadline 

guarantees. 

With resource requirement specifications, more advanced systems can automatically 

generate schedules for periodic workloads. Such schedules require prioritized resource 

access. This aspect of realtime systems is very similar to the idletime scheduler, which 

also requires resource prioritization. Many of the prioritized schedulers proposed for 

realtime systems can implement this aspect of idletime processing. However, a key 

difference exists between realtime systems and the idletime mechanism proposed here. 

Realtime systems give preferential treatment to distinguished resource requests, to 

meet specified or implied service goals, whereas the idletime scheduler gives less 

service to distinguished idletime requests. In some sense, the current proposal is 

therefore the inverse of realtime service: the special class of idletime resource requests 

receives less-than-default service. 

It is simple to convert a mechanism for realtime processing into one that establishes 

prioritization for idletime use (raise the default priority, use explicit notification to 

lower it). However, prioritization is not sufficient to establish full idletime use; 



 
231

preemptability and isolation are also required, and realtime systems provide neither. 

For example, it is acceptable for a realtime system to continue processing a lower-

priority request when a higher-priority one arrives, as long as it misses no deadlines. It 

may in fact be advantageous to avoid preemption, to increase resource utilization. 

Isolation is a concept that has no equivalent in a realtime system; side effects of 

execution at different priorities are always globally visible. 

Another shortcoming of realtime systems is that that they require system-wide 

modifications. As discussed in Section 7.2.1, prioritization and preemptability alone 

require widespread changes across a processing hierarchy. On the other hand, the 

idletime scheduler with preemption intervals presented in this work is effective as a 

local change to key resource schedulers. 

Furthermore, realtime systems focus on scheduling temporally shared resources. Idle-

capacity use of spatially shared resources is a key part of this proposal that a realtime 

system does not address. Thus, although a realtime system can establish one 

requirement for idletime use (prioritization), two others are unsupported 

(preemptability and isolation). Furthermore, realtime execution requires predictability, 

resource requirement specification and admission control, all of which are unnecessary 

for idletime resource use. 



 
232

8.2 Idletime Execution 

All the previous techniques used idle local resources speculatively. Several other 

systems use idle remote resources for non-speculative purposes. One category of such 

systems is process migration systems (cycle harvesters), which push local processes to 

idle remote machines for faster execution. Another category is data migration systems, 

which push data to remote machines that execute a common process. 

One major difference to this proposal is that these systems concentrate on detecting 

remote availability and then utilizing idle capacity for a single resource only, often the 

CPU. The proposed idletime scheduler, on the other hand, strives to utilize idle times 

of all resources independently of one another. 

Another difference is that migration systems do not prioritize between idletime and 

regular processing. Instead, they treat idleness as a system-wide Boolean condition 

and thus only start idletime use when many system resources are completely idle. The 

idletime scheduler proposed here supports utilization of partially idle resources. 

Although many systems (especially realtime systems, see Section 8.1) support high-

priority resource access, few others offer the notion of idletime use. One of the few 

that does is a hierarchical CPU scheduler, where arbitrary threads can act as schedulers 

for other threads by donating part of their allocated CPU time [FORD1996]. One such 

scheduler explicitly supports background CPU use, similar to the POSIX idletime 

scheduler [POSIX1993]. 



 
233

8.2.1 Process Migration 

Cycle harvesters schedule computations on a network of workstations, hoping to 

exploit idle remote resources to speed up local jobs. Historically, they have focused on 

utilizing remote CPU cycles (hence the name) and only utilized other remote resources 

indirectly. Cycle harvesting is especially effective for parallelizable jobs that can 

utilize multiple remote machines at once. However, even sequential jobs can benefit 

from remote idletime execution, where they do not have to compete for resources with 

other active processes.  

The V System [THEIMER1985], Condor [LIZTKOW1988], Benevolent Bandit 

[FELDERMAN1989], the Sprite System [DOUGLIS1991], DAWGS [CLARK1992], and 

Batrun [TANDIARY1996] are cycle harvesters that support process re-migration, when 

a remote host under idletime use becomes unavailable. Butler [NICHOLS1987], a 

component of the Andrew system, is a transparent remote process execution facility 

that does not provide process migration, but simply terminates remote processes when 

a remote machine becomes unavailable.  

Although cycle harvesters are similar in spirit to the proposed idletime scheduler – 

both approaches aim at reclaiming wasted capacity for useful work – several key 

differences exist. Cycle harvesters are often application-level or middleware solutions 

running on top of a conventional operating system without prioritized processing. 

Most of their shortcomings, such as migration overhead and idletime detection, are 

artifacts of that design. 



 
234

Without prioritized resource use, cycle harvesters cannot effectively utilize machines 

with partially idle resources (bursty local workloads). Because migrated processes run 

at the same priority as regular ones on the remote machine, any migrated process can 

severely decrease regular performance on a remote machine. Thus, most harvesters 

only reclaim cycles from remote machines that are fully idle. The system presented in 

this proposal, however, supports prioritization and preemptability, and can utilize 

partial idle capacity. 

Another consequence of the lack of prioritization is high migration costs. Whenever a 

remote machine becomes unavailable for idletime use, all remote processes on it must 

be re-migrated or terminated. Migration is a costly operation and decreases the 

performance of the remote machine during the migration period. Terminations are 

faster but still not instant, because the system must roll back to invalidate local state 

created by the terminated remote process. Additionally, partial work completed by 

terminated processes is lost. 

With process migration systems, the finest-grained operation corresponds to the 

migration of a remote process. In the proposed system, on the other hand, an operation 

is a single resource request (e.g., sending a packet, reading a disk block). 

Consequently, the overhead of aborting idletime use in the proposed system is smaller, 

because the granularity of operations on the idle resource is finer-grained (e.g., waiting 

for disk read to finish vs. migrating an entire process). 



 
235

High migration costs further reduce the chance for utilizing idle resources. For bursty 

remote workloads with short idle times, a cycle harvester could enter a state of 

thrashing, and spend all idle periods migrating process to and from a machine without 

making forward progress on the computation. Because the exact distribution of remote 

idle times is usually unknown, most cycle harvesters employ coarse heuristics and/or 

predictors [GOLDING1995][WYCKOFF1998] to find likely long idle periods. These 

techniques are effective in utilizing long, periodic idle periods (e.g., night hours), but 

fail to detect shorter, transient idle times due to quantization. They can hence fail to 

utilize some existing idle capacities of their target resource. The proposed system does 

not require such heuristics, because prioritization inherently establishes different 

service levels. 

8.2.2 Data Migration 

Unlike cycle harvesters, which push both code and data to an idle remote machine for 

execution, data migration systems only move data to idle peers for processing or 

storage. All remote machines participating in such a distributed system already run a 

copy of the same client process. Process migration systems offer more flexibility in 

remote idle-capacity processing, but data migration systems are simpler, can be 

platform-independent and have smaller preemption costs.  

One popular subclass of such systems is application-level clients for distributed 

computation projects, such as protein folding and genome matching [LARSON2002], 

cryptographic code breaking, or searching for large prime numbers [HAYES1998] – or 



 
236

even extraterrestrial life [KORPELA2001]. In these systems, all participants run the 

same client, and servers only migrate replicas of the data to be processed. 

Other systems use unused remote memory as secondary storage, instead of a local disk 

[MINNICH1989][NARTEN1992][FEELEY1995][MARKATOS1996][KOUSSIH1999]. This 

can improve performance, because access times for remote memory over a local area 

network can be an order of magnitude lower than access times for local disk space. 

As with process migration systems, the idletime mechanisms proposed in this paper 

can improve data migration systems by processing migrated data and communicating 

with remote peers during idle time. 

8.2.3 Speculative Execution in Hardware 

The proposed idea of using idle system resources productively is similar to some 

features found on modern microprocessors. A CPU with a superscalar architecture has 

multiple execution units, which allow it to execute multiple instructions per clock tick, 

increasing performance. 

However, duplicating execution units cannot provide unlimited speedups, because 

superscalar execution requires a continuous instruction stream. Conditional branch 

instructions and indirect jumps limit such execution [TOUCH1991]. They introduce 

ambiguities into the instruction stream that require resolution before execution can 

proceed past them. Thus, execution units may remain idle until the CPU determines 



 
237

whether to follow a specific branch. Instead, modern CPUs use speculative execution 

to process likely future instructions when the memory bus and some execution units 

are idle.  

Speculative execution of instructions never decreases the execution speed of non-

speculative processing, due to prioritized, preempted CPU resources (bus bandwidth, 

execution units). The CPU gives total priority to non-speculative instructions and 

immediately preempts any speculative processing for non-speculative execution. 

Hardware mechanisms eliminate preemption cost. 

Furthermore, all side effects of a completed speculative instruction remain hidden 

until the processor can verify the prediction. For correctly predicted instructions, side 

effects become visible, whereas the CPU discards them for mispredictions. CPUs have 

hardware mechanisms to manage speculative state efficiently. Neither discarded nor 

committed operations delay regular processing. 

Prioritized, preempted resource use, together with isolation of speculative side effects 

result in a worst-case performance that is identical to a CPU without speculation, even 

with constant mispredictions. For correct predictions, however, processor performance 

is improved. 

Processor designs supporting simultaneous multi-threading (SMT) interleave 

execution of instructions of multiple threads, to increase processor utilization past 



 
238

more traditional schemes that only exploit instruction-level parallelism. One 

speculative technique for SMT processors uses idle thread contexts to execute the less-

likely branch of a predicted fork [WALLACE1998]. The authors report a 14-23% 

average speedup for single program performance on an SMT with eight thread 

contexts, for programs with a high rate of branch mispredictions. These results may 

indicate that sharing idletime capacity among multiple tasks may also increase 

performance. 

The Address Resolution Buffer (ARB) [FRANKLIN1996] and the related decentralized 

Speculative Versioning Cache [GOPAL1998] allow reordering of memory-referencing 

instructions to exploit instruction-level parallelism. Traditional processors enforce a 

total order between memory references, whereas the ARB enforces total order only 

among references to the same address. The ARB also supports speculative loads/stores, 

dynamically unresolved loads/stores and memory renaming. The latter capabilities are 

similar to techniques required to support idle-capacity use of storage resources. 

8.2.4 Speculative Execution in Software 

Speculative execution has also been a part of some software systems, such as 

compilers or interpreters for programming languages. One example is a mechanism 

that speculatively interprets program branches in the BaLinda Lisp dialect, and assigns 

resources to speculative threads proportional to their relative likelihood [YEE1993]. 



 
239

A related compile-time technique speculatively executes some method calls of Java 

programs using idle multiprocessor capacity [CHEN1998]. For such methods, a 

speculative thread continues execution after the method's return point, using a 

predicted result value. The mechanism relies in part on properties of the Java virtual 

machine to shield threads from one another. The authors report significant speedups 

(up to a factor of 3) for data-parallel applications; only minor gains for control-flow-

dependent programs. 

Speculative execution has also been proposed in the area of information agents 

[BARISH2000] and decision flow optimization [HULL2000]. These approaches focus 

on generating good subtasks for speculative execution, but do not address the issue of 

executing them with idle capacities. This proposal, on the other hand, focuses on the 

operating system extensions required for non-interfering idletime use, but does not 

address generation of speculative subtasks. In that respect, the two mechanisms 

complement one another. 

8.3 Isolation Techniques 

Section 4.2.4 presented the principle of isolation, which requires that the side effects 

of idletime use must remain hidden until it finishes. The isolation principle virtualizes 

the operating system state. In an unmodified operating system, all processing operates 

on the same system state, transforming it over time. This can lead to incorrect 



 
240

processing in the absence of isolation, if the side effects (state modifications) of 

idletime use become visible to regular processing. 

One example of such a conflict is when an idletime process opens a network 

connection on a specific local port. If a regular process tries to perform the same 

operation later, the operating system must deny this request, because the port number 

is already in use. 

This is what isolation prevents. Because all idletime processes execute on virtual 

operating system state (copy-on-write variant), the operating system state seen by 

regular processing remains unchanged, and the execution behavior remains unchanged 

from the basic case without idletime use present in the system. 

If the system aborts an idletime process, it can discard the associated virtual state. 

However, the result of successful idletime use may become part of the regular 

operating system state. To prevent incorrect processing, this merge operation must be 

performed as an atomic operation with regard to other processing (regular and 

idletime). 

Furthermore, conflicts between the regular and virtual operating system state can arise 

when regular processing modifies the same pieces of state as idletime processing. This 

is similar to processing of concurrent transactions in a database system, where the 

same data item may be involved in multiple transactions. 



 
241

This section will first give a brief overview of related database mechanism, and then 

discuss specific approaches to managing state and evaluate their use for idletime 

isolation. 

8.3.1 Database Concurrency Control 

Transactions in database systems are atomic operations on the contents (state) of a 

database. Allowing multiple transactions to execute concurrently increases 

performance, but requires mechanisms that maintain database correctness. 

Correctness depends on two conditions: integrity (defined through a set of constraints 

on the contents) and serializability. The latter requires database state changes to be 

equivalent to some serial execution of the given set of transactions. 

A wide variety of mechanisms for concurrency control has been proposed 

[BERNSTEIN1981][KOHLER1981][THOMASIAN1998][BHARGAVA1999] . They generally 

fall into three groups: locking, timestamps and rollback. 

One scheme to address concurrency control is locking all data items required for a 

transaction. When a data item carries a lock by another concurrent transaction, a 

transaction can wait, abort itself, or preempt the other transaction. This pessimistic 

scheme incurs the locking overhead even when transactions do not conflict. One issue 

with locking schemes is deadlock, a circular lock dependency among multiple 



 
242

transactions. Various solutions, such as two-phase locking or ordered locks, can avoid 

deadlocks. 

Another mechanism for concurrency control is timestamps on operations. Timestamps 

establish a fixed, serial processing order for all operations, guaranteeing consistency. 

Globally synchronized clocks are required. When conflicts arise, they are strictly 

resolved in timestamp-order. Some timestamp schemes use implicit locking to 

maintain consistency, whereas others use voting mechanisms that avoid centralized 

locks but incur increased communication overhead. 

Concurrency control schemes using rollback differ from the two previous classes. No 

mechanism for conflict prevention is in effect during transaction processing. Instead, 

this scheme handles conflicts during commit time by rolling back all state changes, 

and then either aborting or restarting, when they detect a conflict. Rollback schemes 

are optimistic in that the basic assumption is that conflicts will be rare, and infrequent 

concurrency control during commit time is more efficient than employing an a priori 

scheme on every transaction. 

8.3.2 Discussion 

The proposed mechanism for idletime isolation could benefit from database 

concurrency-control techniques. Operating system processes are similar to database 

transactions. By mapping operating system processes directly into transactions on a 

database, relevant techniques immediately apply. Even when this is not possible, 



 
243

concurrency-control techniques can improve the critical operation maintaining the 

isolation principle – merging of virtual state. 

8.3.2.1 Processes as Transactions 

At some level, process execution in an operating system and transaction processing in 

a database system are similar. Both allow multiple, concurrent entities (processes and 

transactions) to perform operations on shared state. However, concurrency control 

mechanisms for database systems may not directly apply to operating systems, due to 

a few key differences. 

State conflicts in operating system processing are relatively rare. First, because 

processes usually spend a good part of their time in user-space processing private, 

usually unshared state. Second, multiprocessors were rare, and systems had 

consequently only one active physical thread of execution, even though simulating 

multiple threads of control through CPU scheduling. Thus, the operating system could 

lock state through blocking interrupts, a fast operation. Because interrupt blocking is 

limited to single CPUs, with multi-processors becoming more common, operating 

systems must support finer-grained locking [SCHIMMEL1994][LEHEY2001]. 

Scheduling benefits, which allow more than one CPU to execute kernel code 

concurrently, can compensate for the additional locking overhead compared to 

blocking interrupts. 



 
244

Another issue is that concurrency-control mechanisms in databases must be general 

enough for a wide variety of dynamic application domains. On the other hand, the uses 

for concurrency-control mechanisms in an operating system are well-known and static, 

so simplified special-case mechanisms are worth deploying, e.g., for the process lists, 

device queues, etc. 

Furthermore, in the idletime model, idletime use has a lower priority than regular 

processing and is preemptable. Although some concurrency control mechanisms 

support similar prioritized models, e.g., for realtime databases 

[HARITSA1992][YU1994][LINDSTROM2000], they are not immediately applicable to 

prioritize idletime use. 

In databases, one correctness criterion is the existence of a serialized execution of the 

same transactions. The valid execution order of a set of operating system operations in 

the presence of speculations is much more constrained. The order of regular operations 

on operating system state must be unchanged from the basic case when speculations 

are present, and the intermediary operating system states must be identical, as 

described in Section 4.2.4. Database mechanisms enforcing conventional 

serializability may not satisfy these stricter requirements. 

8.3.2.2 Concurrency Control for State Merging 

Although processing in general databases and operating systems is very similar at a 

high level, the operations required to support idletime isolation have unique properties. 



 
245

Many mechanisms for database systems either do not support these properties, or only 

support them inefficiently, incurring additional overheads due to their generality. 

However, specialized modifications of some of the basic concurrency-control 

techniques, such as lock-based schemes, can support isolation. This section will 

discuss this in more detail, and relate the proposed isolation mechanism from Section 

4.2.4 to its database equivalents. 

The atomic merge operation after a successful speculation is one instance where 

concurrency-control mechanisms from databases may apply. This state merge is a 

strictly confined operation. First, only two sets of data are involved, regular and 

idletime. It is rare that two idletime processes finish at the same time, and they are 

independent and can be committed in any order. Second, regular state has priority over 

idletime state. If a piece of regular state has changed during idletime processing, the 

merge cannot complete, and the system must discard the result of the idletime 

operation. Third, even if an idletime process runs to completion, merging its state may 

not have benefit if continued regular processing has updated the same state already. 

These properties make optimistic, rollback-based ideas unsuitable for the state merge 

operation. Such mechanisms would merge idletime state before it finishes, because 

they assume the absence of conflicts and success on termination. Conflicts trigger 

rollbacks, which cause regular processing delays. 



 
246

Timestamp-based mechanisms are also not well suited to this scenario. Timestamps 

provide a serial execution order for transactions. However, timestamps do not capture 

the constraints of the state merge. Regular state always overrides idletime state. 

Lock-based mechanisms, on the other hand, are very applicable. A single lock for the 

whole state is the simplest solution. In effect, this preempts regular use for the 

duration of the merge operation, and will therefore decrease regular performance. 

However, only finishing idletime processes with successful results incur this overhead. 

Such processes potentially improve regular performance, for example, when a 

speculative task succeeded. Thus, the speculation gain may compensate for the locking 

overhead. 

More advanced schemes use multiple locks for different parts of the operating system 

state, and further minimize the locking cost. For example, if an idletime task will only 

changed the “network” part of the operating system state, it would only need to 

acquire the “network” lock. Regular processing that does not involve the “network” 

state can continue execution during the merge. This is similar to the copy-on-write 

approach for idletime state management, where multiple locks for different pieces of 

state allow merging idletime revisions. 

In the extreme case, each data item in the operating system state would have a separate 

lock. Clearly, this is infeasible due to the space overhead. An adequate mechanism will 



 
247

probably utilize multiple, fine-grained locks for logically separate parts of the state 

space, optimizing common processing patterns. 

8.4 Priority Schemes 

Another area of related work focuses on prioritized service for specific resources or 

services, such as network traffic or disk I/O. Many proposals for prioritized service 

focus on realtime systems (see Section 8.1). This section will concentrate on other, 

non-realtime proposals and compare them to the idletime scheduler with preemption 

intervals. 

A previous paper has investigated the idea of providing idletime network service at the 

application layer by distinguishing between regular and background web transactions 

[EGGERT1999]. This idea came out of the LSAM project [TOUCH1998], which used this 

capability for speculative background multicasting of web transactions to pre-load 

self-organizing, distributed caches with popular content. [ALMEIDA1998] also 

proposed both application-level and in-kernel mechanisms for web traffic 

prioritization. A kernel-level mechanism for idletime networking was the result of an 

earlier instantiation of the idletime processing model [EGGERT2001A][EGGERT2001B]. 

This earlier work did not use a preemption interval to provide non-interference, and 

was therefore less effective than the approach presented here. It also failed to utilize 

significant amounts of idle capacity for background use. Chapter 3 evaluated both 

preliminary systems in detail. 



 
248

Several other proposals establish prioritized network service, as discussed in Section 

5.4.1. The idea of marking packets according to their priority is present in the original 

Internet architecture [POSTEL1981], as well as several link-layer technologies, such as 

the ATM cell loss priority bit [ATM1999] or the Frame Relay discard eligible bit 

[THIBODEAU1998]. Proposed Internet extensions for differentiated service 

[BLAKE1998] give different per-hop forwarding service to packets of different priority 

classes [CLARK1998][DAVIE2002]. 

Other proposals address traffic prioritization at the transport layer. One proposed 

system to preload web caches uses a simulated, connectionless datagram protocol 

(essentially UDP) together with low-priority forwarding [DAVISON2000]. 

TCP Nice [VENKATARAMANI2002] is a sender-side modification of the traditional TCP 

congestion control algorithm that establishes low-priority service. It supports 

background replication of web content in the NPS system [KOKKU2003]. NPS is 

similar in scope and design to the earlier LSAM system [TOUCH1998], and TCP Nice 

corresponds to a transport-layer equivalent of the application-layer background traffic 

mechanism in [EGGERT1999]. TCP-LP [KUZMANOVIC2003] is another TCP 

modification similar to TCP Nice. 

MulTCP allows users to assign weights (priorities) to different connections 

[CROWCROFT1998]. Weights correspond to proportional shares of the available 

bandwidth along a congested path.  



 
249

The stride scheduler is a proportional-share mechanism [WALDSPURGER1995]. 

Experiments show that it successfully allocates different shares of the managed 

resource to different users, such as for network transmissions in the Linux kernel. The 

key difference between proportional-share approaches – such as this scheduler and 

MulTCP – compared to the idletime scheduler with preemption intervals is starvation 

preemption. True idletime use requires zero-length shares, which are often 

unsupported. [SULLIVAN2000] proposes an extension of the stride scheduler that 

further minimizes the impact of concurrent use on the relative performances observed 

by users. 

Migrating Sockets follow a different approach to establish different network service 

levels [YAU1998]. They push most protocol processing out of the kernel and into user-

level processes. A rate-controlling network scheduler then controls transmissions to 

meet pre-defined quality-of-services parameters. In a sense, this design is the inverse 

to the proposed idletime scheduler that minimizes changes to the network stack, and 

targets hidden scheduling (processing due to asynchronous events) at the lowest 

possible layer. Migrating Sockets, on the other hand, completely re-designs the 

network stack, and minimizes hidden scheduling by doing protocol processing at the 

user level, where CPU scheduling controls it. 

Various application-level mechanisms strive to provide support for a background 

service class. MS Manners [DOUCEUR1999] is an application-level service that 

monitors the progress of cooperating background applications. It is based on the 



 
250

principle that an observed drop in performance must be due to resource contention. 

Consequently, when MS Manners detects a drop in background performance, it 

notifies the cooperating background applications to reduce their aggressiveness 

further. Though reported to be effective, the mechanism does not prevent reductions in 

foreground performance, and instead reacts to their presence. It is furthermore requires 

application modifications to monitor and report progress. 

Two other application-level mechanisms aim at providing background network 

transmissions. The Mozilla web browser continually monitors its own network 

transmissions [FISHER2002]. When Mozilla does not transmit user-requested data, it 

will prefetch likely future web pages in the background. One major limitation of this 

mechanism is its inability to detect network transmissions by other applications. 

Background page prefetches can thus delay other network transmissions. 

Microsoft’s Background Intelligent Transfer Service (BITS) [MICROSOFT2002] is a 

network transmission scheduler that supports background web transmissions using 

HTTP. Applications submit transmission requests, and receive notifications on request 

completion. BITS does not support complete starvation, i.e., background transmissions 

will never completely halt even when foreground transmissions require all available 

bandwidth, and thus fails to isolate foreground performance. Furthermore, it is a 

reactive mechanism similar to MS Manners, and requires several seconds to adjust the 

rate of background traffic, further increasing interference with concurrent foreground 

work. 



 
251

Middleware approaches for quality-of-service support, interposed between the 

application and the kernel, promise effective support for different service profiles 

without kernel changes, and only minor changes to the applications 

[ABDELZAHER1999]. However, by processing transmissions outside the kernel, 

scheduling traffic on a per-packet scale becomes unattainable. Instead, middleware 

approaches control traffic at a coarser granularity (e.g., flow-based), similarly to 

application-level approaches. 

Another issue with middleware or application-level proposals is performance at 

Gigabit speeds. Current workstations based on the common PC architecture (or 

similar) already fail to drive Gigabit link layers at line rate. Adding additional context 

switches between kernel and user-level processing can further decrease performance. 

On the other hand, the idletime scheduler presented here is an in-kernel mechanism 

that does not incur additional context switches. The experimental evaluation in Section 

6.2 verifies that the mechanism can support Gigabit speed without significant 

overhead. 



 
252

9. Conclusion 

Common workloads on many computer systems rarely utilize resources fully. Even 

when the bottleneck resource becomes fully loaded, other resources often have idle 

capacity available. Using this idle capacity for productive work – without interfering 

with the ongoing foreground work – can improve overall system efficiency and user-

perceived performance. 

Many current operating systems do not support such idletime use of available capacity. 

Their schedulers strive to guarantee fairness and prevent starvation, but do not support 

prioritized use, preemption, or full isolation of concurrent tasks from one another. 

Furthermore, many systems implicitly prioritize internal processing, such as interrupt 

handling. All these factors cause delays for regular foreground use that render idletime 

service based on traditional operating system mechanisms ineffective. Chapter 2 

discussed the challenges associated with idletime use in detail, and Chapter 3 

presented preliminary work in application- and kernel-level mechanisms for idletime 

network scheduling. Although effective in establishing different levels of service, the 

preliminary mechanisms did not successfully isolate foreground traffic from the 

presence of background transmissions. They also failed to utilize significant available 

capacity for background use, and do not generalize from network scheduling to 

arbitrary resources. 



 
253

The key contribution of this work is a general, resource-independent scheduler that 

can support idletime use while minimizing delays of the foreground workload. This 

scheduler addresses the limitations of the preliminary mechanisms in Chapter 3. It 

selectively relaxes the work conservation property for idletime tasks during a period 

called the preemption interval. The length of a preemption interval is a variable that 

allows tuning of the mechanism to accommodate specific resource characteristics, 

workloads, and user policies. Chapter 4 formally defined a model for resource 

processing, and described the required properties of an effective idletime scheduler in 

terms of the model. It also analyzed the proposed scheduler quantitatively, and 

presented a simple model that can predict the expected regular and idletime 

performances for given resources and workloads. 

One key advantage of the idletime scheduler is deployability as a localized 

modification to selected schedulers. Other proposals supporting prioritized resource 

use require widespread changes to many parts of the operating systems, and often 

depend on application modifications or cooperation. Chapter 5 discussed several 

variants of idletime scheduling that satisfy the principles defined in Chapter 4, and 

identified one variant for implementation and evaluation. Later sections of Chapter 5 

described the prototype implementation of idletime scheduling for the disk and 

network schedulers of the FreeBSD operating system. For each resource, changes to a 

single scheduler established idletime use. 



 
254

Chapter 6 presented a detailed experimental investigation of the prototype disk and 

network scheduler implementations for a variety of different workloads. All scenarios 

modeled the worst case of an unlimited idletime workload, and measured regular and 

idletime throughput and latencies. In most of these worst-case scenarios, the idletime 

scheduler was effective in shielding regular processing from concurrent idletime use, 

incurring a maximum of 10-15% performance impact.  

Chapter 6 discussed how the experimentally observed behavior of the idletime 

scheduler conformed to the theoretical model. It includes a detailed comparison 

between the measured performances of selected scenarios and performance predictions 

based on the quantitative analysis in Chapter 4. Despite its simplicity, the quantitative 

model generally predicted measured performances to within 5-15%.  

The experiments also verified that the length of the preemption interval is an effective 

control mechanism that allows trading a reduction in idletime performance for an 

increase in foreground performance. It enables adaptation of the scheduling behavior 

to resource, workload, and user policy characteristics. Longer preemption intervals 

increase foreground performance through a corresponding reduction in idletime 

processing performance. Chapter 7 also discusses future scheduler extensions. 

Examples include mechanisms that automatically adapt the idletime scheduler to 

conform to user delay policies, based on the currently observed workloads. 



 
255

Many other systems strive to utilize idle resource capacity, such as process migration 

systems, caches, or prefetchers. Other proposals, such as realtime systems, also offer 

prioritized resource service. However, the majority of realtime systems depend on 

explicit, deadline-based resource reservations, which cannot easily describe 

interactive, aperiodic tasks that are common on interactively used computer systems. 

Chapter 8 discussed these and other related proposals, and compared them to the 

idletime scheduler presented in this work. 



 
256

Bibliography 

[ABDELZAHER1999] Tarek F. Abdelzaher and Kang G. Shin. QoS Provisioning
with qContracts in Web and Multimedia Servers. Proc.
IEEE Real-Time Systems Symposium, Phoenix, AZ, USA, 
December 1-3, 1999, pp. 44-53. 

[ACHARYA1999] Anurag Acharya and Sanjeev Setia. Availability and Utility
of Idle Memory in Workstation Clusters. Proc. ACM 
SIGMETRICS Conference on Measurement and Modeling 
of Computer Systems, Atlanta, GA, USA, May 1-4, 1999, 
pp. 35-46. 

[AKYÜREK1995] Sedat Akyürek and Kenneth Salem. Adaptive Block 
Rearrangement. ACM Transactions on Computer Systems, 
Vol. 13, No. 2, May 1995, pp. 89-121. 

[ALMEIDA1998] Jussara Almeida, Mihaela Dabu, Anand Manikutty and Pei 
Cao. Providing Differentiated Levels of Service in Web
Content Hosting. Proc. SIGMETRICS Workshop on 
Internet Server Performance, Madison, WI, USA, June 23, 
1998, pp. 91-102. 

[AMDAHL1967] Gene M. Amdahl. Validity of the single processor approach
to achieving large scale computing capabilities. Proc. AFIPS
Joint Computer Conference, Atlantic City, NJ, USA, April
18-20, 1967, pages 483-485. 

[APACHE1995] Apache Software Foundation. Apache HTTP Server Project.
http://www.apache.org/ 

[ARON1998] Mohit Aron and Peter Druschel. TCP: Improving Startup
Dynamics by Adaptive Timers and Congestion Control.
Technical Report TR98-318, Department of Computer 
Science, Rice University, Houston, TX, USA, June 3, 1998.

[ARON2000] Mohit Aron and Peter Druschel. Soft timers: efficient 
microsecond software timer support for network processing.
ACM Transactions on Computer Systems (TOCS), Vol. 18, 
No. 3, August 2000, pp. 197-228. 



 
257

[ATM1999] ATM Forum. ATM Forum Traffic Management
Specification Version 4.1. AF-TM-0121.000, March 1999. 

[BALA1994] Kavita Bala, M. Frans Kaashoek and William E. Weihl.
Software Pre-fetching for Translation Lookaside Buffers. 
Proc. USENIX Symposium on Operating System Design
and Implementation (OSDI), Monterey, CA, USA,
November 14-17, 1994, pp 243-254. 

[BARISH2000] Greg Barish, Craig A. Knoblock and Steven Minton.
Speculative Execution for Information Agents. Proc.
National Conference on Artificial Intelligence (AAAI),
Austin, TX, USA, July 30 - August 3, 2000, pp. 1062. 

[BERNSTEIN1981] Philip A. Bernstein and Nathan Goodman. Concurrency
Control in Distributed Database Systems. ACM Computing
Surveys, Vol. 13, No. 2, June 1981, pp. 185-221. 

[BHARGAVA1999] Bharat Bhargava. Concurrency Control in Database
Systems. IEEE Transactions on Knowledge and Data 
Engineering, Vol. 11, No. 1, January/February 1999, pp. 3-
16. 

[BLAKE1998] Steven Blake, David Black, Mark Carlson, Elwyn Davies,
Zheng Wang, and Walter Weiss. An Architecture for 
Differentiated Services. RFC 2475, December 1998. 

[BORMANN1999] Carsten Bormann. Providing Integrated Services over Low-
bitrate Links. RFC 2689, September 1999. 

[BRAKMO1995] Lawrence S. Brakmo and Larry L. Peterson. Performance
Problems in BSD4.4 TCP. ACM SIGCOMM Computer
Communication Review , Vol. 25, No. 5, October 1995, pp. 
69-86. 

[BRESLAU2000] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John
Heidemann, Ahmed Helmy, Polly Huang, Steven McCanne,
Kannan Varadhan, Ya Xu, and Haobo Yu. Advances in
Network Simulation. IEEE Computer, Vol. 33, No. 5, May
2000, pp. 59-67. 



 
258

[BRUNO1998] John Bruno, Eran Gabber, Banu Özden, and Abraham
Silberschatz. The Eclipse Operating System: Providing
Quality of Service via Reservation Domains. Proc. USENIX
Annual Technical Conference, New Orleans, LA, USA,
June 15-19, 1998, pp. 235-246. 

[BRUNO1999] John Bruno, José Brustoloni, Eran Gabber, Banu Özden,
and Abraham Silberschatz. Retrofitting Quality of Service
into a Time-Sharing Operating System. Proc. USENIX 
Annual Technical Conference, Monterey, CA, USA, June 6-
11, 1999, pp. 15-26. 

[CARLBERG2001] Ken Carlberg, Panos Gevros and Jon Crowcroft. Lower than
Best Effort: a Design and Implementation. Proc. ACM
SIGCOMM Workshop on Data Communications in Latin
America and the Caribbean, San Jose, Costa Rica, April 3-5, 
2001, pp. 244-265. 

[CHANG1999] Fay Chang and Garth A. Gibson. Automatic I/O Hint
Generation through Speculative Execution. Proc. USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), New Orleans, LA, USA, February
22-25, 1999, pp. 1-14. 

[CHEN1998] Mike Chen and Kunle Olukotun. Exploiting Method-Level 
Parallelism in Single-Threaded Java Programs. Proc. 
International Conference on Parallel Architectures and
Compilation Techniques (PACT), Paris, France, October 
12-29, 1998, pp. 176-184. 

[CHO1998] Kenjiro Cho. A Framework for Alternate Queuing: Towards 
Traffic Management by PC-UNIX Based Routers. Proc. 
USENIX Annual Technical Conference, New Orleans, LA, 
USA, June 15-19, 1998, pp. 247-258. 

[CLARK1988] David Clark. The Design Philosophy of the DARPA
Internet Protocols. ACM SIGCOMM Computer 
Communication Review, Vol. 18, No. 4, 1988, pp. 106-114.

[CLARK1992] Henry Clark and Bruce McMillin. DAWGS – A Distributed 
Compute Server Utilizing Idle Workstations. Journal of
Parallel and Distributed Computing, Vol. 14, 1992, pp 175-
186. 



 
259

[CLARK1998] David Clark and Wenjia Fang. Explicit Allocation of Best-
Effort Packet Delivery Service. IEEE/ACM Transactions on 
Networking, Vol. 6, August 1998, pp. 362-373. 

[COHEN2000] Edith Cohen and Haim Kaplan. Prefetching the Means for 
Document Transfer: A New Approach for Reducing Web
Latency. Proc. IEEE INFOCOM, Tel Aviv, Israel, March
26-30, 2000, pp. 854-863. 

[CROWCROFT1998] Jon Crowcroft and Philippe Oechslin. Differentiated End-to-
End Internet Services using a Weighted Proportional Fair 
Sharing TCP. ACM SIGCOMM Computer Communication, 
Vol. 28, No. 3, July 1998, pp. 53-67. 

[DAVISON2000] Brian D. Davison and Vincenzo Liberatore. Pushing
Politely: Improving Web Responsiveness One Packet at a
Time. Performance Evaluation Review, Vol. 28, No. 2, 
September 2000, pages 43-49. 

[DIKE2001] Jeff Dike. User Mode Linux. Proc. Linux Symposium, 
Ottawa Canada, July 25-28, 2001. 

[DOUCEUR1999] John R. Douceur and William J. Bolosky. Progress-based 
regulation of low-importance processes. Proc. ACM 
Symposium on Operating System Principles (SOSP), 
Kiawah Island Resort, SC, USA, December 12-15, 1999, 
pp. 247-260. 

[DOUGAN1999] Cort Dougan, Paul Mackerras and Victor Yodaiken.
Optimizing the Idle Task and Other MMU Tricks. Proc.
USENIX Symposium on Operating Systems Design and 
Implementation (OSDI), New Orleans, LA, USA, February 
22-25, 1999, pp. 229-237. 

[DOUGLIS1991] Fred Douglis and John Ousterhout. Transparent Process 
Migration: Design Alternatives and the Sprite 
Implementation. Software – Practice and Experience (SPE), 
Vol. 21, No. 8, 1991, pp. 757-785. 



 
260

[DRUSCHEL1996] Peter Druschel and Gaurav Banga. Lazy Receiver
Processing (LRP): A Network Subsystem Architecture for
Server Systems. Proc. USENIX Symposium on Operating
System Design and Implementation (OSDI), Seattle, WA, 
USA, October 28-31, 1996, pp. 261-275. 

[EGGERT1999] Lars Eggert and John Heidemann. Application-Level 
Differentiated Services for Web Servers. World Wide Web 
Journal, Vol. 3, No. 2, 1999, pp. 133-142. 

[EGGERT2001A] Lars Eggert and Joseph D. Touch. End-System Support for 
Idletime Networking. ISI Technical Report ISI-TR-559, 
USC Information Sciences Institute, May 2001. 

[EGGERT2001B] Lars Eggert. Speculative Use of Idle Resources. Ph.D.
Dissertation Proposal, ISI Technical Report ISI-TR-560, 
USC Information Sciences Institute, October 2001. 

[FEELEY1995] Michael J. Feeley, William E. Morgan, Frederic H. Pighin,
Anna R. Karlin, Henry M. Levy and Chandroman A.
Thekkath. Implementing Global Memory Management in a
Workstation Cluster. Proc. ACM Symposium on Operating 
System Principles (SOSP), Copper Mountain Resort, CO, 
USA, December 3-6, 1995, pp. 201-212. 

[FELDERMAN1989] Robert E. Felderman, Eve M. Schooler and Leonard
Kleinrock. The Benevolent Bandit Laboratory: A Testbed
for Distributed Algorithms. IEEE Journal on Selected Areas
in Communications (JSAC), Vol. 7, No. 2, February 1989, 
pp. 303-311. 

[FISHER2002] Darin Fisher. Mozilla Link Prefetching FAQ. October 14,
2002. 

[FITZGERALD1986] Robert Fitzgerald and Richard F. Rashid. The Integration of 
Virtual Memory Management and Interprocess
Communication in Accent. ACM Transactions on Computer
Systems, Vol. 4, No. 2, May 1986, pp. 147-177. 

[FORD1996] Bryan Ford and Sai Susarla. CPU Inheritance Scheduling.
Proc. USENIX Symposium on Operating Systems Design 
and Implementation (OSDI), Seattle, WA, USA, October 
28-31, 1996, pp. 91-105. 



 
261

[FRANKLIN1996] Manoj Franklin and Gurindar S. Sohi. ARB: A Hardware
Mechanism for Dynamic Reordering of Memory
References. IEEE Transactions on Computers, Vol. 45, No. 
5, May 1996, pp. 552-571. 

[GOLDING1995] Richard Golding, Peter Bosch, Carl Staelin, Tim Sullivan,
and John Wilkes. Idleness is not sloth. Proc. USENIX
Technical Conference, New Orleans, LA, USA, January 16-
20, 1995, pp. 201-212. 

[GOPAL1998] Sridhar Gopal, T.N. Vijaykumar, James E. Smith and
Gurindar S. Sohi. Speculative Versioning Cache. Proc.
Symposium on High-Performance Computer Architecture, 
Las Vegas, NV, USA January 31 - February 4, 1998, pp. 
195-205. 

[GUPTA1997] Alok Gupta, Dale O. Stahl and Andrew B. Whinston. 
Priority Pricing of Integrated Services Networks. Internet 
Economics, L. W. McKnight and J. P. Bailey (editors), MIT 
Press, 1997, pp. 323-352. 

[HARDIN1968] Garrett Hardin. The Tragedy of the Commons. Science, Vol. 
162, 1968, pp. 1243-1248. 

[HARITSA1992] Jayant R. Haritsa, Michael J. Carey and Miron Livny. Data
Access Scheduling in Firm Realtime Databases. Realtime
Systems, Vol. 4, No. 3, 1992, pp. 203-241. 

[HARKINS1998] Dan Harkins and D. Carrell. The Internet Key Exchange
(IKE). RFC 2409, November 1998. 

[HAYES1998] Brian Hayes. Collective Wisdom. American Scientist, Vol.
86. No. 2, March-April 1998, pp. 118-122. 

[HP1995] Netperf: A Network Performance Benchmark. Revision 2.0.
Technical Report, Information Networks Division, Hewlett-
Packard Company, February 15, 1995. 

[HUGHES2001] Amy S. Hughes and Joseph D. Touch. Expanding the Scope
of Prefetching through Inter-Application Cooperation. Proc.
International Web Content Caching and Distribution
Workshop (WCW), Boston, MA, USA, June 20-22, 2001, 
pp 129-130. 



 
262

[HUGHES2002] Amy S. Hughes. Enhancing Network Object Caches 
through Cross-Domain Cooperation. Ph.D. Dissertation, 
Department of Computer Science, University of Southern
California, December 2002. 

[HULL2000] Richard Hull, Francois Llirbat, Bharat Kumar, Ganz Zhou, 
Gouzhu Dong and Jianwen Su. Optimization Techniques for
Data-Intensive Decision Flows. Proc. International
Conference on Data Engineering (ICDE), San Diego, CA,
USA, February 26 - March 3, 2000, pp 281-292. 

[HUWIG2003] Kurt Huwig. Divide and Conquer – Virtual Server Contexts 
in Practical Applications. Linux Magazine, February 2003, 
pp. 32-35. 

[IYER2001] Sitaram Iyer and Peter Druschel. Anticipatory scheduling: A
disk scheduling framework to overcome deceptive idleness 
in synchronous I/O. Proc. ACM Symposium on Operating 
Systems Principles (SOSP), October 21-24, 2001, Chateau 
Lake Louise, Banff, Alberta, Canada, pp. 117-130. 

[JACOBSON1988] Van Jacobson. Congestion Avoidance and Control. Proc.
ACM SIGCOMM, August 16-19, 1988, Stanford, CA, 
USA, pp. 314-329. 

[JACOBSON1992] Van Jacobson, Robert Braden and Dave Borman. TCP 
Extensions for High Performance. RFC 1323, May 1992. 

[DAVIE2002] B. Davie, A. Charny, J. C. R. Bennett, K. Benson, J. Y. Le 
Boudec, W. Courtney, S. Davari, V. Firoiu and D. Stiliadis. 
An Expedited Forwarding PHB (Per-Hop Behavior). RFC 
3246, March 2002. 

[JINMEI1998] Tatuya Jinmei, Kazu Yamamoto, Jun-ichiro Hagino, 
Munechika Sumi-kawa, Yoshinou Inoue, Kazushi Sugyo 
and Soichi Sakane. An Overview of the KAME Network 
Software: Design and Implementation of the Advanced
Internetworking Platform. Proc. Annual Conference of the
Internet Society (INET), San Jose, CA, USA, June 22-25, 
1998. 



 
263

[KAMP2000] Poul-Henning Kamp and Robert N. M. Watson. Jails:
Confining the Omnipotent Root. Proc. System 
Administration and Networking Conference (SANE),
Maastricht, The Netherlands, May 22-25, 2000. 

[KING1990] Richard P. King. Disk Arm Movement in Anticipation of
Future Requests. ACM Transactions on Computer Systems,
Vol. 8, No. 3, 1990, pp. 214-229. 

[KOHLER1981] Walter H. Kohler. A Survey of Techniques for
Synchronization and Recovery in Decentralized Computer
Systems. ACM Computing Surveys, Vol. 13, No.2, June
1981, pp. 149-183. 

[KOKKU2003] Ravi Kokku, Praveen Yalagandula, Arun Venkataramani 
and Mike Dahlin. NPS: A Non-interfering Deployable Web 
Prefetching System. Proc. USENIX Symposium on Internet
Technologies and Systems (USITS), March 26-28, 2003, 
Seattle, WA, USA. 

[KORPELA2001] Eric Korpela, Dan Werthimer, David Anderson, Jeff Cobb 
and Matt Lebofsky. SETI@home: Massively Distributed 
Computing for SETI. IEEE Computing in Science and 
Engineering, Vol. 3, No. 1, January/February 2001, pp. 78-
83. 

[KOUSSIH1999] Samir Koussih, Anurag Acharya and Sanjeev Setia. Dodo: 
A User-level System for Exploiting Idle Memory in
Workstation Clusters. Proc. IEEE International Symposium
on High Performance Distributed Computing (HPDC),
Redondo Beach, CA, USA, August 1999, pp. 301-308. 

[KUZMANOVIC2003] Aleksandar Kuzmanovic and Edward W. Knightly. TCP-
LP: A Distributed Algorithm for Low Priority Data
Transfer. Proc. IEEE INFOCOM, San Francisco, CA, USA,
April 2003, pp. 1691-1701. 

[KWAK1999] Hantak Kwak, Ben Lee, Ali R. Hurson, Suk-Han Yoon and 
Woo-Jong Hahn. Effects of Multithreading on Cache
Performance. IEEE Transactions on Computers, Vol. 48,
No. 2, February 1999, pp. 176-184. 



 
264

[LAI1996] Kevin Lai and Mary Baker. A Performance Comparison of
UNIX Operating Systems on the Pentium. Proc. USENIX
Annual Technical Conference, San Diego, CA, USA, 
January 22-26, 1996, pp. 265-278. 

[LAKSHMAN1998] K. Lakshman, Raj Yavatkar and Raphael Finkel. Integrated
CPU and Network-I/O QoS Management In An Endsystem. 
Computer Communications, Vol. 21, No. 4, April 1998, pp. 
325-333. 

[LAMPSON1980] Butler Lampson and David Redell. Experience with
Processes and Monitors in Mesa. Communications of the
ACM, Vol. 23, No. 2, February 1980, pp. 105-117. 

[LARSON2002] Stefan M. Larson, Christopher D. Snow, Michael Shirts, and
Vijay S. Pande. Folding@Home and Genome@Home:
Using distributed computing to tackle previously intractable
problems in computational biology. Computational
Genomics, Horizon Press, 2002. 

[LEHEY2001] Greg Lehey. Improving the FreeBSD SMP Implementation.
Proc. FREENIX Track: USENIX Annual Technical
Conference, Boston, MA, USA, June 25-30, 2001. 

[LESLIE1996] Ian Leslie, Derek McAuley, Richard Black, Timothy
Roscoe, Paul Bar-ham, David Evers, Robin Fairbairns and 
Eoin Hyden. The Design and Implementation of an
Operating System to Support Distributed Multimedia 
Applications. IEEE Journal on Selected Areas In
Communications (JSAC), Vol. 14, No. 7, September 1996,
pp. 1280-1297. 

[LEVER2000] Chuck Lever, Marius Aamodt Eriksen and Stephen P.
Molloy. An analysis of the TUX web server. CITI Technical 
Report 00-8, Center for Information Technology 
Integration, University of Michigan, November 16, 2000. 

[LINDSTROM2000] Jan Lindstrom and Kimmo Raatikainen. Using Importance
of Transactions and Optimistic Concurrency Control in 
Firm Realtime Databases. Proc. International Conference on 
Realtime Systems and Applications (RTCSA), Cheju Island,
South Korea, December 12-14, 2000. 



 
265

[LIZTKOW1988] Michael J. Liztkow, Miron Livny and Matt W. Mutka. 
Condor – A Hunter of Idle Workstations. Proc. International 
Conference on Distributed Computing Systems (ICDCS), 
San Jose, CA, USA, June 13-17, 1988, pp. 104-111. 

[MARKATOS1996] Evangelos P. Markatos and George Dramitinos.
Implementation of a Reliable Remote Memory Pager. Proc.
USENIX Annual Technical Conference, San Diego, CA, 
USA, January 22-26, 1996, pp. 177-190. 

[MATTHEWS1997] Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello,
Randolph Y. Wang and Thomas E. Anderson. Improving 
the Performance of Log-Structured File Systems with 
Adaptive Methods. Proc. ACM Symposium on Operating 
Systems Principles (SOSP), Saint Malo, France, October 5-
8, 1997, pp. 238-251. 

[MAY1997] Martin May, Jean-Chrysostome Bolot, Christophe Diot and 
Alain Jean-Marie. 1-Bit Schemes for Service Discrimination 
in the Internet: Analysis and Evaluation. Technical Report
RR-3238, INRIA, Sophia Antipolis, France, August 1997. 

[MCKUSICK1984] Marshall Kirk McKusick, William N. Joy, Samuel J.
Leffler, and Robert S. Fabry. A fast file system for UNIX.
ACM Transactions on Computer Systems, Vol. 2, No. 3, 
August 1984, pp. 181-197. 

[MCKUSICK1996] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels
and John S. Quarterman. The Design and Implementation of
the 4.4 BSD Operating System. Addison-Wesley, April 30, 
1996. 

[MCKUSICK1999] Marshall Kirk McKusick and Gregory R. Granger. Soft
Updates: A Technique for Eliminating Most Synchronous
Writes in the Fast Filesystem. Proc. FREENIX Track:
USENIX Annual Technical Conference, Monterey, CA,
USA, June 6-11, 1999, pp. 1-17. 

[MCKUSICK2002] Marshall Kirk McKusick. Running “fsck” in the
Background. Proc. BSDCon 2002, February 11-14, 2002, 
San Francisco, CA, USA, pp. 55-64. 



 
266

[MICROSOFT2002] Microsoft Corporation. Background Intelligent Transfer
Service. Microsoft Windows Server Technical Article, 
August 2002. 

[MINNICH1989] Ronald G. Minnich and David J. Farber. The Mether
system: A distributed shared memory for SunOS 4.0. Proc.
Summer USENIX Conference, Baltimore, MY, USA, June
12-16, 1989, pp. 51-60. 

[MOGUL1990] Jeffrey C. Mogul and Stephen Deering. Path MTU 
Discovery. RFC 1191, November 1990. 

[MOGUL1992] Jeffrey C. Mogul. Observing TCP Dynamics in Real
Networks. Proc. ACM SIGCOMM, Baltimore, MY, USA,
August 17-20, 1992, pp. 305-317. 

[MOGUL1997] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating 
Receive Livelock in an Interrupt-Driven Kernel. ACM 
Transactions on Computer Systems, Vol. 15, No. 3, August
1997, pp. 217-252. 

[MOLANO1998] Anastasio Molano, Ragunathan Rajkumar and Kanaka
Juvva. Dynamic Disk Bandwidth Management and
Metadata Prefetching in a Realtime Filesystem. Proc. IEEE 
Euromicro Workshop on Realtime Systems, Berlin, 
Germany, June 17-1, 1998, pp. 203-213. 

[MOSBERGER1996] David Mosberger and Larry L. Peterson. Making Paths
Explicit in the Scout Operating System. Proc. USENIX 
Symposium on Operating Systems Design and
Implementation (OSDI), Seattle, WA, USA, October 28-31, 
1996, pp. 153-168. 

[MOWRY1996] Todd C. Mowry, Angela K. Demke and Orran Krieger.
Automatic Compiler-Inserted I/O Prefetching for Out-of-
Core Applications. Proc. USENIX Symposium on 
Operating Systems Design and Implementation (OSDI),
Seattle, WA, USA, October 28-31, 1996, pp. 3-17. 

[MOWRY1998] Todd C. Mowry. Tolerating Latency in Multiprocessors
through Compiler-Inserted Prefetching. ACM Transactions 
on Computer Systems, Vol. 16, No. 1, February 1998, pp.
55-92. 



 
267

[MUMOLO1999] Enzo Mumolo. Prediction of Disk Arm Movements in
Anticipation of Future Requests. Proc. IEEE International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), 
College Park, MD, USA, October 24-28, 1999, pp. 305-312.

[MUTKA1987] Matt W. Mutka and Miron Livny. Profiling Workstations’
Available Capacity For Remote Execution. Proc. IFIP WG
7.3 Symposium on Computer Performance, Brussels,
Belgium, December 7-9, 1987, pp. 529-544. 

[MUTKA1991] Matt W. Mutka and Miron Livny. The available capacity of
a privately owned workstation environment. Performance 
Evaluation, Vol. 12, 1991, pp. 269-284. 

[NAHRSTEDT1996] Klara Nahrstedt, and Jonathan M. Smith. Design, 
Implementation and Experiences with the OMEGA End-
point Architecture. IEEE Journal on Selected Areas in
Communications (JSAC), Vol. 17, No. 7, September 1996,
pp. 1263-1279. 

[NARTEN1992] Thomas Narten and Raj Yavatkar. Remote Memory as a
Resource in Distributed Systems. Proc. IEEE Workshop on 
Operating Systems, Key Biscane, FL, USA, April 23-24, 
1992, pp. 132-136. 

[NICHOLS1987] David A. Nichols. Using Idle Workstations in a Shared
Computing Environment. Proc. ACM Symposium on
Operating Systems Principles (SOSP), Austin, TX, USA, 
November 8-11, 1987, pp. 5-12. 

[OZAWA1995] Toshihiro Ozawa, Yasunori Kimura and Shin'ichiro
Nishizaki. Cache Miss Heuristics and Preloading
Techniques for General-Purpose Programs. Proc. ACM 
International Symposium on Microarchitecture (MICRO), 
Ann Arbor, MI, USA, November 29 - December 1 1995, pp. 
243-248. 

[PADMANABHAN1996] Venkata N. Padmanabhan and Jeffrey C. Mogul. Using
predictive prefetching to improve World-Wide Web latency. 
ACM SIGCOMM Computer Communication Review, Vol. 
27, No. 3, 1996, pp. 22-36. 



 
268

[PADMANABHAN1998] Venkata N. Padmanabhan and Randy H. Katz. TCP Fast
Start: A Technique For speeding Up Web Transfers. Proc. 
IEEE GLOBECOM Internet Mini-Conference, November 
8-12, 1998, Sydney, Australia, pp. 41-46. 

[PAPATHANASIOU2003] Athanasios E. Papathanasiou and Michael L. Scott. Energy
Efficiency through Burstiness. To Appear IEEE Workshop 
on Mobile Computing Systems and Applications 
(WMCSA), Monterey, CA, USA, October 9-10, 2003. 

[PARSA1999] Christina Parsa and J.J. Garcia-Luna-Aceves. Improving 
TCP Congestion Control Over Internets with Heterogeneous
Transmission Media. Proc. IEEE International Conference
on Network Protocols (ICNP), Toronto, Canada, October
31-November 3, 1999, pp. 213-221. 

[PATTERSON1988] David A. Patterson, Garth A. Gibson and Randy H. Katz. A
Case for Redundant Arrays of Inexpensive Disks (RAID).
Proc. ACM SIGMOD International Conference on
Management of Data, Chicago, IL, USA, June 1-3, 1988, 
pp. 109-116. 

[PATTERSON1995] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel 
Stodolsky and Jim Zelenka. Informed Prefetching and
Caching. Proc. ACM Symposium on Operating Systems 
Principles (SOSP), Copper Mountain Resort, CO, USA, 
December 3-6, 1995, pp. 79-95. 

[PIERCE1994] Jim Pierce and Trevor Mudge. The Effect of Speculative 
Execution on Cache Performance. Proc. Parallel Processing 
Symposium (IPPS), Cancun, Mexico, April 26-29, 1994, pp. 
172-179. 

[POPEK1981] Gerald Popek, Bruce Walker, Johanna Chow, David
Edwards, Charles Kline, Gerald Rudisin, and Greg Thiel. 
LOCUS: A Network Transparent, High Reliability
Distributed System. Proc. ACM Symposium on Operating
Systems Principles (SOSP), Pacific Grove, CA, USA,
December 14-16, 1981, pp. 169-177. 

[POSIX1993] POSIX 1003.1b-1993. Portable Operating System Interface 
(POSIX) Part 1: System Application Program Interface
Amendment 1: Realtime Extension [C Language], 1993. 



 
269

[POSTEL1981] Jon Postel. DARPA Internet Protocol Specification. RFC
791, September 1981. 

[POSTEL1983] Jon Postel. Discard Protocol. RFC 863, May 1983. 

[POSTEL1998] Jon Postel. Private Communication. 1998. 

[RASHID1988] Richard F. Rashid, Avadis Tevanian, Michael Young, David
B. Golub, Robert V. Baron, David L. Black, William J.
Bolosky, Jonathan Chew. Machine-Independent Virtual 
Memory Management for Paged Uniprocessor and
Multiprocessor Architectures. IEEE Transactions on
Computers, Vol. 37, No. 8, 1988, pp. 896-907. 

[REZNICK1993] Larry Reznick. Using cron and crontab. Sys Admin: The 
Journal for UNIX Systems Administrators, Vol. 2, No. 4, 
July/August 1993, pp. 29-34. 

[RICHARDSON2003] Michael Richardson, and D. Hugh Redelmeier.
Opportunistic Encryption using The Internet Key Exchange
(IKE). Work In Progress (draft-richardson-ipsec-
opportunistic-12.txt), June 2003. 

[RIZZO1997] Luigi Rizzo. Dummynet: A simple approach to the
evaluation of network protocols. ACM SIGCOMM 
Computer Communication Review, Vol. 27, No. 1, January
1997 pp. 31-41. 

[ROBERSON2002] Jeff Roberson. FreeBSD “prio” patch, February 2002. 

[SCHIMMEL1994] Curt Schimmel. UNIX Systems for Modern Architectures.
Addison-Wesley, 1994. 

[SHALUNOV2001] Stanislav Shalunov and Benjamin Teitelbaum. QBone
Scavenger Service (QBSS) Definition. Internet2 Technical
Report, March 16, 2001. 



 
270

[SPRUNT1988] Brinkley Sprunt, David Kirk and Lui Sha. Priority-Driven, 
Preemptive I/O Controllers for Realtime Systems. Proc. 
IEEE Annual International Symposium on Computer
Architecture, Honolulu, HI, USA, May/June 1988, pp. 152-
159. 

[STANKOVIC1991] John A. Stankovic and Krithi Ramamritham. The Spring 
Kernel: A New Paradigm for Realtime Systems. IEEE 
Software, Vol. 8, No. 4, May 1991, pp. 62-72. 

[SUGERMAN2001] Jeremy Sugerman, Ganesh Venkitachalam and Beng-Hong 
Lim. Virtualizing I/O Devices on VMware Workstation’s
Hosted Virtual Machine Monitor. Proc. USENIX Annual 
Technical Conference, Boston, MA, USA, June 25-30, 
2001, pp. 1-14. 

[SULLIVAN2000] David G. Sullivan and Margo I. Seltzer. Isolation with
Flexibility: A Resource Management Framework for
Central Servers. Proc. USENIX Annual Technical 
Conference, San Diego, CA, USA, June 19-23, 2000, pp. 
337-350. 

[TANDIARY1996] Fredy Tandiary, Suraj C. Kothari, Ashish Dixit, and E.
Walter Anderson. Batrun: Utilizing Idle Workstations for
Large-scale Computing. IEEE Parallel and Distributed
Technology, Vol. 4, No. 2, 1996, pp. 41-48. 

[THEIMER1985] Marvin M. Theimer, Keith A. Lantz and David R. Cheriton.
Preemptable Remote Execution Facilities for the V-System. 
Proc. ACM Symposium on Operating Systems Principles
(SOSP), Orcas Island, WA, USA, December 1985, pp. 2-12.

[THIBODEAU1998] Jan Thibodeau (editor). The Basic Guide to Frame Relay 
Networking. Frame Relay Forum, Fremont, CA, USA, 
1998. 

[THOMASIAN1998] Alexander Thomasian. Concurrency Control: Methods,
Performance and Analysis. ACM Computing Surveys, Vol. 
30, No. 1, March 1998, pp. 70-119. 

[TOKUDA1990] Hideyuki Tokuda, Tatsuo Nakajima and Prithvi Rao.
Realtime Mach: Towards a Predictable Realtime System. 
Proc. USENIX Mach Symposium, Burlington, VT, USA, 
October 4-5, 1990, pp. 73-82. 



 
271

[TOUCH1991] Joseph D. Touch and David J. Farber. Memory-side driven 
anticipatory instruction transfer interface with processor-
side instruction selection. U.S. Patent #5,353,419,
University of Pennsylvania, September 1991. (Granted
October 4, 1994.) 

[TOUCH1992] Joseph D. Touch. Mirage: A Model for Latency in
Communication. Ph.D. Dissertation, MS-CIS-92-42, DSL-
11, Department of Computer and Information Science,
University of Pennsylvania, January 1992. 

[TOUCH1993] Joseph D. Touch. Parallel Communication. Proc. IEEE 
INFOCOM, San Francisco, CA, USA, March 28 - April 1, 
1993, pp. 506-512. 

[TOUCH1994] Joseph D. Touch and David J. Farber. An Experiment in
Latency Reduction. Proc. IEEE INFOCOM, Toronto, 
Canada, June 12-16, 1994, pp. 175-181. 

[TOUCH1998] Joseph D. Touch and Amy S. Hughes. The LSAM Proxy 
Cache – a Multicast Distributed Virtual Cache. Computer 
Networks and ISDN Systems, Vol. 30, No. 22-23, 
November 1998, pp. 2245-2252. 

[TRAW1995] C. Brendan S. Traw and Jonathan M. Smith. Striping within
the network subsystem. IEEE Network, Vol. 9, No. 4, 
July/August 1995, pp. 22-32. 

[TRENT1995] Gene Trent and Mark Sake. WebSTONE: The First
Generation in HTTP Server Benchmarking. Technical 
Report, Silicon Graphics, Inc., Mountain View, CA,
February 1995. 

[VARGHESE1997] George Varghese and Anthony Lauck. Hashed and
hierarchical timing wheels: efficient data structures for
implementing a timer facility. IEEE/ACM Transactions on
Networking, Vol. 5, No. 6, 1997, pp. 824-834. 

[VENKATARAMANI2002] Arun Venkataramani, Ravi Kokku and Mike Dahlin. TCP 
Nice: A Mechanism for Background Transfers. Proc.
Symposium on Operating Systems Design and
Implementation (OSDI), December 9-11, 2002, Boston, 
MA, USA. 



 
272

[VISWESWARAIAH1997] Vikram Visweswaraiah and John Heidemann. Improving
Restart of Idle TCP Connections. Technical Report 97-661, 
University of Southern California, November 1997. 

[WALDSPURGER1995] Carl A. Waldspurger and William E. Weihl. Stride
Scheduling: Deterministic Proportional-Share Resource 
Management. Technical Memorandum MIT/LCS/TM-528, 
MIT Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, USA, June 1995. 

[WALLACE1998] Steven Wallace, Brad Calder and Dean M. Tullsen.
Threaded Multiple Path Execution. Proc. ACM International 
Symposium on Computer Architecture (ISCA), June 27 -
July 1, 1998, Barcelona, Spain, pp. 238-249. 

[WORTHINGTON1994] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt.
Scheduling Algorithms for Modern Disk Drives. Proc.
ACM SIGMETRICS Conference on Measurement and 
Modeling of Computer Systems, Nashville, TN, USA, May 
16-20, 1994, pp. 241-251. 

[WYCKOFF1998] Peter Wyckoff, Theodore Johnson and Karpjoo Jeong.
Finding Idle Periods on Networks of Workstations. 
Technical Report TR1998-761, Computer Science 
Department, New York University, March 1998. 

[YAU1998] David K. Y. Yau and Simon S. Lam. Migrating Sockets –
End System Support for Networking with Quality of Service
Guarantees. IEEE/ACM Transactions on Networking, Vol.
6, No. 6, December 1998, pp. 700-716. 

[YEE1993] Jenn-Jong Yee, Ming-Dong Feng and Chung-Kwong Yuen. 
Speculative Processing Mechanisms in a Parallel Lisp
Machine: BIDDLE. Proc. Hawaii International Conference
on System Sciences, Vol. 1, Kihei, HI, January 5-8, 1993, 
pp. 457-465. 

[YU1994] Philip S. Yu, Kun-Lung Wu, Kwei-Jay Lin and Sang H. 
Son. On Realtime Databases: Concurrency Control and 
Scheduling. Proc. IEEE, Special Issue on Realtime Systems, 
January 1994, pp. 140-157. 



 
273

[ZEC2003] Marko Zec and Miljenko Mikuc. Real-Time IP Network 
Simulation at Gigabit Data Rates. Proc. International 
Conference on Telecommunications (ConTEL), Zagreb,
Croatia, June 11-13, 2003. 

[ZHENG2003] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin
Vahdat. Currentcy: Unifying Policies for Resource
Management. Proc. USENIX Annual Technical Conference, 
San Antonio, TX, USA, June 9-14, 2003, pp. 43-56. 

 


		2003-11-07T11:46:13-0800
	Lars Eggert
	I am the author of this document




